Supplementing Glucose Intake Reverses the Inflammation Induced by a High-Fat Diet by Increasing the Expression of Siglec-E Ligands on Erythrocytes

Kolaczkowska, E., and P. Kubes. 2013. Neutrophil recruitment and function in health and inflammation. Nature Reviews Immunology 13: 159–175. https://doi.org/10.1038/nri3399.

Article  CAS  PubMed  Google Scholar 

Zhou, M.G., H.D. Wang, X.Y. Zeng, P. Yin, J. Zhu, W.Q. Chen, X.H. Li, L.J. Wang, L.M. Wang, Y.N. Liu, J.M. Liu, M. Zhang, J.L. Qi, S.C. Yu, A. Afshin, E. Gakidou, S. Glenn, V.S. Krish, M.K. Miller-Petrie, et al. 2019. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: A systematic analysis for the global burden of disease study 2017. Lancet 394: 1145–1158. https://doi.org/10.1016/S0140-6736(19)30427-1.

Article  PubMed  PubMed Central  Google Scholar 

Soehnlein, O. 2012. Multiple roles for neutrophils in atherosclerosis. Circulation Research 110: 875–888. https://doi.org/10.1161/CIRCRESAHA.111.257535.

Article  CAS  PubMed  Google Scholar 

Swirski, F.K., M.J. Pittet, M.F. Kircher, E. Aikawa, F.A. Jaffer, P. Libby, and R. Weissleder. 2006. Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease. Proceedings of the National Academy of Sciences 103: 10340–10345. https://doi.org/10.1073/pnas.0604260103.

Article  ADS  CAS  Google Scholar 

Tabas, I., and A.H. Lichtman. 2017. Monocyte-macrophages and T cells in atherosclerosis. Immunity 47: 621–634. https://doi.org/10.1016/j.immuni.2017.09.008.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duewell, P., H. Kono, K.J. Rayner, C.M. Sirois, G. Vladimer, F.G. Bauernfeind, G.S. Abela, L. Franchi, G. Nuñez, M. Schnurr, T. Espevik, E. Lien, K.A. Fitzgerald, K.L. Rock, K.J. Moore, S.D. Wright, V. Hornung, and E. Latz. 2010. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464: 1357–1361. https://doi.org/10.1038/nature08938.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

DiRenzo, D., G.K. Owens, and N.J. Leeper. 2017. “Attack of the clones”: Commonalities between cancer and atherosclerosis. Circulation Research 120: 624–626. https://doi.org/10.1161/CIRCRESAHA.116.310091.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fredman, G., and I. Tabas. 2017. Boosting inflammation resolution in atherosclerosis: The next frontier for therapy. The American Journal of Pathology 187: 1211–1221. https://doi.org/10.1016/j.ajpath.2017.01.018.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Libby, P. 2017. Interleukin-1 beta as a target for atherosclerosis therapy: Biological basis of CANTOS and beyond. Journal of the American College of Cardiology 70: 2278–2289. https://doi.org/10.1016/j.jacc.2017.09.028.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, J.Q., G. Nicoll, C. Jones, and P.R. Crocker. 2000. Siglec-9, a novel sialic acid binding member of the immunoglobulin superfamily expressed broadly on human blood leukocytes. The Journal of Biological Chemistry 275: 22121–22126. https://doi.org/10.1074/jbc.M002788200.

Article  CAS  PubMed  Google Scholar 

Yu, Z., M. Maoui, L. Wu, D. Banville, and S. Shen. 2001. mSiglec-E, a novel mouse CD33-related siglec (sialic acid-binding immunoglobulin-like lectin) that recruits Src homology 2 (SH2)-domain-containing protein tyrosine phosphatases SHP-1 and SHP-2. The Biochemical Journal 353: 483–492. https://doi.org/10.1042/0264-6021:3530483.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lizcano, A., I. Secundino, S. Döhrmann, R. Corriden, C. Rohena, S. Diaz, P. Ghosh, L.Q. Deng, V. Nizet, and A. Varki. 2017. Erythrocyte sialoglycoproteins engage Siglec-9 on neutrophils to suppress activation. Blood 129: 3100–3110. https://doi.org/10.1182/blood-2016-11-751636.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, H.M., Y. Zheng, Y.X. Zhang, J. Li, S.M. Fernandes, D.F. Zeng, X.H. Li, R.L. Schnaar, and Y. Jia. 2020. Immunosuppressive Siglec-E ligands on mouse aorta are up-regulated by LPS via NF-κB pathway. Biomedicine & Pharmacotherapy 122: 109760. https://doi.org/10.1016/j.biopha.2019.109760.

Article  CAS  Google Scholar 

Zhang, Y.X., Y. Zheng, J. Li, L. Nie, Y.J. Hu, F.J. Wang, H.M. Liu, S.M. Fernandes, Q.J. Zhong, X.H. Li, R.L. Schnaar, and Y. Jia. 2019. Immunoregulatory Siglec ligands are abundant in human and mouse aorta and are up-regulated by high glucose. Life Sciences 216: 189–199. https://doi.org/10.1016/j.lfs.2018.11.049.

Article  CAS  PubMed  Google Scholar 

Citro, A., A. Valle, E. Cantarelli, A. Mercalli, S. Pellegrin, D. Liberati, L. Daffonchio, O. Kastsiuchenka, P.A. Ruffini, M. Battaglia, M. Allegretti, and L. Piemonti. 2015. CXCR1/2 inhibition blocks and reverses type 1 diabetes in mice. Diabetes 64: 1329–1340. https://doi.org/10.2337/db14-0443.

Article  CAS  PubMed  Google Scholar 

Gautier, E.F., M. Leduc, S. Cochet, K. Bailly, C. Lacombe, N. Mohandas, F. Guillonneau, W.E. Nemer, and P. Mayeux. 2018. Absolute proteome quantification of highly purified populations of circulating reticulocytes and mature erythrocytes. Blood Advances 2: 2646–2657. https://doi.org/10.1182/bloodadvances.2018023515.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakajima, K., S. Kitazume, T. Angata, R. Fujinawa, K. Ohtsubo, E. Miyoshi, and N. Taniguchi. 2010. Simultaneous determination of nucleotide sugars with ion-pair reversed-phase HPLC. Glycobiology 20: 865–871. https://doi.org/10.1093/glycob/cwq044.

Article  CAS  PubMed  Google Scholar 

Kochanowski, N., F. Blanchard, R. Cacan, F. Chirat, E. Guedon, A. Marc, and J.L. Goergen. 2006. Intracellular nucleotide and nucleotide sugar contents of cultured CHO cells determined by a fast, sensitive, and high-resolution ion-pair RP-HPLC. Analytical Biochemistry 348: 243–251. https://doi.org/10.1016/j.ab.2005.10.027.

Article  CAS  PubMed  Google Scholar 

Libby, P. 2002. Inflammation in atherosclerosis. Nature 420: 868–874. https://doi.org/10.1038/nature01323.

Article  ADS  CAS  PubMed  Google Scholar 

Libby, P. 2012. Inflammation in atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology 32: 2045–2051. https://doi.org/10.1161/ATVBAHA.108.179705.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gaetano, G. 2001. Low-dose aspirin and vitamin E in people at cardiovascular risk: A randomised trial in general practice. Lancet 357: 89–95. https://doi.org/10.1016/s0140-6736(00)03539-x.

Article  PubMed  Google Scholar 

Everett, B.M., A.D. Pradhan, D.H. Solomon, N. Paynter, J. Macfadyen, E. Zaharris, M. Gupta, M. Clearfield, P. Libby, A. Hasan, R.J. Glynn, and P.M. Ridker. 2013. Rationale and design of the cardiovascular inflammation reduction trial: A test of the inflammatory hypothesis of atherothrombosis. American Heart Journal 166: 199–207. https://doi.org/10.1016/j.ahj.2013.03.018.

Article  PubMed  PubMed Central  Google Scholar 

Raber, I., C.P. McCarthy, M. Vaduganathan, D.L. Bhatt, D.A. Wood, J. Cleland, R. Blumenthal, and J.W. McEvoy. 2019. The rise and fall of aspirin in the primary prevention of cardiovascular disease. Lancet 393: 2155–2167. https://doi.org/10.1016/S0140-6736(19)30541-0.

Article  PubMed  Google Scholar 

Gaziano, J.M., C. Broton, R. Coppolecchia, C. Cricelli, H. Darius, P.B. Gorelick, G. Howard, T.A. Pearson, P.M. Rothwell, L.M. Ruilope, M. Tendera, and G. Tognoni. 2018. Use of aspirin to reduce risk of initial vascular events in patients at moderate risk of cardiovascular disease (ARRIVE): A randomised, double-blind, placebo-controlled trial. Lancet 392: 1036–1046. https://doi.org/10.1016/S0140-6736(18)31924-X.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang, Y., H.M. Liu, Y.X. Zhang, J. Li, C.P. Wang, L. Zhou, Y. Jia, and X.H. Li. 2017. Synthesis and biological evaluation of ginsenoside compound K derivatives as a novel class of LXRα activator. Molecules 22: 1232. https://doi.org/10.3390/molecules22071232.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Capodanno, D., and D.J. Angiolillo. 2018. Canakinumab for secondary prevention of atherosclerotic disease. Expert Opinion on Biological Therapy 18: 215–220. https://doi.org/10.1080/14712598.2018.1420776.

Article  CAS  PubMed  Google Scholar 

Kawanishi, K., C. Dhar, R. Do, N. Varki, P. Gordts, and A. Varki. 2019. Human species-specific loss of CMP-N-acetylneuraminic acid hydroxylase enhances atherosclerosis via intrinsic and extrinsic mechanisms. Proceedings of the National Academy of Sciences 116: 16036–16045. https://doi.org/10.1073/pnas.1902902116.

Article  ADS  CAS  Google Scholar 

Zakiev, E.R., I.A. Sobenin, V.N. Sukhorukov, V.A. Myasoedova, E.A. Ivanova, and A.N. Orekhov. Carbohydrate composition of circulating multiple-modified low-density lipoprotein. Vascular Health and Risk Management 12: 379–385. https://doi.org/10.2147/VHRM.S112948.

Zhang, L., T.T. Wei, Y. Li, J. Li, Y. Fan, F.Q. Huang, Y.Y. Cai, G.X. Ma, J.F. Liu, Q.Q. Chen, S.L. Wang, H.L. Li, R.N. Alolga, B.L. Liu, D.S. Zhao, J.H. Shen, X.M. Wang, W. Zhu, P. Li, and L.W. Qi. 2018. Functional metabolomics characterizes a key role for N-acetylneuraminic acid in coronary artery diseases. Circulation 137: 1374–1390. https://doi.org/10.1161/CIRCULATIONAHA.117.031139.

Article  CAS  PubMed  Google Scholar 

Lübbers, J., E. Rodríguez, and Y. Kooyk. 2018. Modulation of immune tolerance via Siglec-sialic acid interactions. Frontiers in Immunology 9: 2807. https://doi.org/10.3389/fimmu.2018.02807.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif