Integrative systems biology of wheat susceptibility to Fusarium graminearum uncovers a conserved gene regulatory network and identifies master regulators targeted by fungal core effectors

Parry DW, Jenkinson P, McLeod L. Fusarium ear blight (scab) in small grain cereals—a review. Plant Pathol. 1995;44(2):207–38.

Article  Google Scholar 

Goswami RS, Kistler HC. Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol. 2004;5(6):515–25.

Article  CAS  PubMed  Google Scholar 

Boyacioǧlu D, Hettiarachchy NS. Changes in some biochemical components of wheat grain that was infected with Fusarium graminearum. J Cereal Sci. 1995;21(1):57–62.

Article  Google Scholar 

Argyris J, Sanford D, TeKrony D. Fusarium graminearum infection during wheat seed development and its effect on seed quality. Crop Sci. 2003;43(5):1782–8.

Article  Google Scholar 

Chen Y, Kistler HC, Ma Z. Fusarium graminearum trichothecene mycotoxins: biosynthesis, regulation, and management. Annu Rev Phytopathol. 2019;57(1):15–39.

Article  CAS  PubMed  Google Scholar 

McMullen M, Bergstrom G, De Wolf E, Dill-Macky R, Hershman D, Shaner G, et al. A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Dis. 2012;96(12):1712–28.

Article  PubMed  Google Scholar 

Dahl B, Wilson WW. Risk premiums due to Fusarium head blight (FHB) in wheat and barley. Agric Syst. 2018;162:145–53.

Article  Google Scholar 

Wilson W, Dahl B, Nganje W. Economic costs of Fusarium head blight, scab and deoxynivalenol. World Mycotoxin J. 2018;11(2):291–302.

Article  Google Scholar 

Vaughan M, Backhouse D, Ponte EMD. Climate change impacts on the ecology of Fusarium graminearum species complex and susceptibility of wheat to Fusarium head blight: a review. World Mycotoxin J. 2016;9(5):685–700.

Article  Google Scholar 

Mylonas I, Stavrakoudis D, Katsantonis D, Korpetis E. Chapter 1 - better farming practices to combat climate change. In: Ozturk M, Gul A, editors. Climate change and food security with emphasis on wheat. 1st ed. Cambridge: Academic Press; 2020. p. 1–29.

Google Scholar 

Xia R, Schaafsma AW, Wu F, Hooker DC. Impact of the improvements in Fusarium head blight and agronomic management on economics of winter wheat. World Mycotoxin J. 2020;13(3):423–39.

Article  CAS  Google Scholar 

Venske E, dos Santos RS, da Farias DR, Rother V, da Maia LC, Pegoraro C, et al. Meta-analysis of the QTLome of Fusarium head blight resistance in bread wheat: refining the current puzzle. Front Plant Sci. 2019;10:727.

Article  PubMed  PubMed Central  Google Scholar 

Zheng T, Hua C, Li L, Sun Z, Yuan M, Bai G, et al. Integration of meta-QTL discovery with omics: towards a molecular breeding platform for improving wheat resistance to Fusarium head blight. Crop J. 2021;9(4):739–49.

Article  Google Scholar 

Vogel JP, Raab TK, Schiff C, Somerville SC. PMR6, a pectate lyase–like gene required for powdery mildew susceptibility in Arabidopsis. Plant Cell. 2002;14(9):2095–106.

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Connell RJ, Panstruga R. Tête à tête inside a plant cell: establishing compatibility between plants and biotrophic fungi and oomycetes. New Phytol. 2006;171(4):699–718.

Article  PubMed  Google Scholar 

van Schie CCN, Takken FLW. Susceptibility genes 101: how to be a good host. Annu Rev Phytopathol. 2014;52(1):551–81.

Article  PubMed  Google Scholar 

He Q, McLellan H, Boevink PC, Birch PRJ. All roads lead to susceptibility: the many modes of action of fungal and oomycete intracellular effectors. Plant Commun. 2020;1(4):100050.

Article  PubMed  PubMed Central  Google Scholar 

Jaswal R, Kiran K, Rajarammohan S, Dubey H, Singh PK, Sharma Y, et al. Effector biology of biotrophic plant fungal pathogens: current advances and future prospects. Microbiol Res. 2020;241:126567.

Article  CAS  PubMed  Google Scholar 

Jørgensen IH. Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica. 1992;63(1):141–52.

Article  Google Scholar 

Ma HX, Bai GH, Gill BS, Hart LP. Deletion of a chromosome arm altered wheat resistance to Fusarium head blight and deoxynivalenol accumulation in Chinese Spring. Plant Dis. 2006;90(12):1545–9.

Article  CAS  PubMed  Google Scholar 

Garvin DF, Porter H, Blankenheim ZJ, Chao S, Dill-Macky R. A spontaneous segmental deletion from chromosome arm 3DL enhances Fusarium head blight resistance in wheat. Genome. 2015;58(11):479–88.

Article  CAS  PubMed  Google Scholar 

Hales B, Steed A, Giovannelli V, Burt C, Lemmens M, Molnár-Láng M, et al. Type II Fusarium head blight susceptibility conferred by a region on wheat chromosome 4D. J Exp Bot. 2020;71(16):4703–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chhabra B, Tiwari V, Gill BS, Dong Y, Rawat N. Discovery of a susceptibility factor for Fusarium head blight on chromosome 7A of wheat. Theor Appl Genet. 2021;134(7):2273–89.

Article  CAS  PubMed  Google Scholar 

Nalam VJ, Alam S, Keereetaweep J, Venables B, Burdan D, Lee H, et al. Facilitation of Fusarium graminearum infection by 9-lipoxygenases in Arabidopsis and wheat. MPMI. 2015;28(10):1142–52.

Article  CAS  PubMed  Google Scholar 

Gordon CS, Rajagopalan N, Risseeuw EP, Surpin M, Ball FJ, Barber CJ, et al. Characterization of Triticum aestivum abscisic acid receptors and a possible role for these in mediating Fusairum head blight susceptibility in wheat. Ma W, editor. PLoS One. 2016;11(10):e0164996.

Article  PubMed  PubMed Central  Google Scholar 

Hu LQ, Mu JJ, Su PS, Wu HY, Yu GH, Wang GP, et al. Multi-functional roles of TaSSI2 involved in Fusarium head blight and powdery mildew resistance and drought tolerance. J Integr Agric. 2018;17(2):368–80.

Article  CAS  Google Scholar 

Li G, Zhou J, Jia H, Gao Z, Fan M, Luo Y, et al. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nat Genet. 2019;51(7):1106–12.

Article  CAS  PubMed  Google Scholar 

Su Z, Bernardo A, Tian B, Chen H, Wang S, Ma H, et al. A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nat Genet. 2019;51(7):1099–105.

Article  CAS  PubMed  Google Scholar 

Brauer EK, Balcerzak M, Rocheleau H, Leung W, Schernthaner J, Subramaniam R, et al. Genome editing of a deoxynivalenol-induced transcription factor confers resistance to Fusarium graminearum in wheat. MPMI. 2020;33(3):553–60.

Article  CAS  PubMed  Google Scholar 

Su P, Zhao L, Li W, Zhao J, Yan J, Ma X, et al. Integrated metabolo-transcriptomics and functional characterization reveals that the wheat auxin receptor TIR1 negatively regulates defense against Fusarium graminearum. J Integr Plant Biol. 2021;63(2):340–52.

Article  CAS  PubMed  Google Scholar 

Fabre F, Rocher F, Alouane T, Langin T, Bonhomme L. Searching for FHB resistances in bread wheat: susceptibility at the crossroad. Front Plant Sci. 2020;11:731.

Article  PubMed  PubMed Central  Google Scholar 

Gorash A, Armonienė R, Kazan K. Can effectoromics and loss-of-susceptibility be exploited for improving Fusarium head blight resistance in wheat? Crop J. 2021;9(1):1–16.

Article  Google Scholar 

Baillo EH, Kimotho RN, Zhang Z, Xu P. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes. 2019;10(10):771.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tran LSP, Nishiyama R, Yamaguchi-Shinozaki K, Shinozaki K. Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. gmcrops. 2010;1(1):32–9.

Article  Google Scholar 

Khan SA, Li MZ, Wang SM, Yin HJ. Revisiting the role of plant transcription factors in the battle against abiotic stress. Int J Mol Sci. 2018;19(6):1634.

Article  PubMed  PubMed Central  Google Scholar 

Khan M, Seto D, Subramaniam R, Desveaux D. Oh, the places they’ll go! A survey of phytopathogen effectors and their host targets. Plant J. 2018;93(4):651–63.

Article  CAS  PubMed  Google Scholar 

Ding L, Xu H, Yi H, Yang L, Kong Z, Zhang L, et al. Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways. PLoS One. 2011;6(4):e19008.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gottwald S, Samans B, Lück S, Friedt W. Jasmonate and ethylene dependent defence gene expression and suppression of fungal virulence factors: two essential mechanisms of Fusarium head blight resistance in wheat? BMC Genom. 2012;13(1):369.

Article  CAS  Google Scholar 

Erayman M, Turktas M, Akdogan G, Gurkok T, Inal B, Ishakoglu E, et al. Transcriptome analysis of wheat inoculated with Fusarium graminearum. Front Plant Sci. 2015;6:867.

Article  PubMed  PubMed Central  Google Scholar 

Nussbaumer T, Warth B, Sharma S, Ametz C, Bueschl C, Parich A, et al. Joint transcriptomic and metabolomic analyses reveal changes in the primary metabolism and imbalances in the subgenome orchestration in the bread wheat molecular response to Fusarium graminearum. G3 (Bethesda). 2015;5(12):2579–92.

留言 (0)

沒有登入
gif