Clinicopathological significance of microsatellite instability and immune escape mechanism in patients with gastric solid-type poorly differentiated adenocarcinoma

Japanese Gastric Cancer Association. Japanese classification of gastric carcinoma: 3rd English edition. Gastric Cancer. 2011;14:101–12.

Arai T, Matsuda Y, Aida J, Takubo K, Ishiwata T. Solid-type poorly differentiated adenocarcinoma of the stomach: clinicopathological and molecular characteristics and histogenesis. Gastric Cancer. 2019;22:314–22.

Article  CAS  PubMed  Google Scholar 

Kunisaki C, Akiyama H, Nomura M, Matsuda G, Otsuka Y, Ono HA, et al. Clinicopathological properties of poorly-differentiated adenocarcinoma of the stomach: comparison of solid- and non-solid-types. Anticancer Res. 2006;26:639–46.

PubMed  Google Scholar 

Otsuji E, Kuriu Y, Ichikawa D, Ochiai T, Okamoto K, Hagiwara A, et al. Clinicopathologic and prognostic characterization of poorly differentiated medullary-type gastric adenocarcinoma. World J Surg. 2004;28:862–5.

Article  PubMed  Google Scholar 

Lu BJ, Lai M, Cheng L, Xu JY, Huang Q. Gastric medullary carcinoma, a distinct entity associated with microsatellite instability-H, prominent intraepithelial lymphocytes and improved prognosis. Histopathology. 2004;45:485–92.

Article  PubMed  Google Scholar 

Tsuruta S, Kohashi K, Yamada Y, Fujiwara M, Koga Y, Ihara E, et al. Solid-type poorly differentiated adenocarcinoma of the stomach: Deficiency of mismatch repair and SWI/SNF complex. Cancer Sci. 2020;111:1008–19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sasaki T, Kohashi K, Kawamoto S, Ihara E, Oki E, Nakamura M, et al. Tumor progression by epithelial-mesenchymal transition in ARID1A- and SMARCA4-aberrant solid-type poorly differentiated gastric adenocarcinoma. Virchows Arch. 2022;480:1063–75.

Article  CAS  PubMed  Google Scholar 

Taube JM, Galon J, Sholl LM, Rodig SJ, Cottrell TR, Giraldo NA, et al. Implications of the tumor immune microenvironment for staging and therapeutics. Mod Pathol. 2018;31:214–34.

Article  CAS  PubMed  Google Scholar 

Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–9.

Article  ADS  Google Scholar 

Arai T, Sakurai U, Sawabe M, Honma N, Aida J, Ushio Y, et al. Frequent microsatellite instability in papillary and solid-type, poorly differentiated adenocarcinomas of the stomach. Gastric Cancer. 2013;16:505–12.

Article  CAS  PubMed  Google Scholar 

Puliga E, Corso S, Pietrantonio F, Giordano S. Microsatellite instability in gastric cancer: between lights and shadows. Cancer Treat Rev. 2021;95: 102175.

Article  PubMed  Google Scholar 

D’Errico M, Rinaldis E, Blasi MF, Viti V, Falchetti M, Calcagnile A, et al. Genome-wide expression profile of sporadic gastric cancers with microsatellite instability. Eur J Cancer. 2009;45:461–9.

Article  PubMed  Google Scholar 

Kim MS, Chung NG, Kang MR, Yoo NJ, Lee SH. Genetic and expressional alterations of CHD genes in gastric and colorectal cancers. Histopathology. 2011;58:660–8.

Article  PubMed  Google Scholar 

Mestrallet G, Brown M, Bozkus CC, Bhardwaj N. Immune escape and resistance to immunotherapy in mismatch repair deficient tumors. Front Immunol. https://doi.org/10.3389/fimmu.2023.1210164.

Gabrilovich DI, Nagaraj S. Myeloid-derived-suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Cao X. Immunosuppressive cells in tumor immune escape and metastasis. J Mol Med. 2016;94:509–22.

Article  PubMed  Google Scholar 

Jaffer T, Ma D. The emerging role of chemokine receptor CXCR2 in cancer progression. Transl Cancer Res. 2016;5:616–28.

Article  Google Scholar 

Xiang Z, Zhou ZJ, Xia GK, Zhang XH, Wei ZW, Zhu JT, et al. A positive crosstalk between CXCR4 and CXCR2 promotes gastric cancer metastasis. Oncogene. 2017;36:5122–33.

Article  CAS  PubMed  Google Scholar 

Wang Z, Liu H, Shen Z, Wang X, Zhang H, Qin J, et al. The prognostic value of CXC-chemokine receptor 2 (CXCR2) in gastric cancer patients. BMC Cancer. 2015;15:766.

Article  PubMed  PubMed Central  Google Scholar 

Gabitass RF, Annels NE, Stocken DD, Pandha HA, Middleton GW. Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother. 2011;60:1419–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang L, Chang EWY, Wong SC, Min Ong S, Chong DQY, Ling KL. Increased myeloid-derived suppressor cells in gastric cancer correlate with cancer stage and plasma S100A8/A9 proinflammatory proteins. J Immunol. 2013;190:794–804.

Article  CAS  PubMed  Google Scholar 

Okita Y, Tanaka H, Ohira M, Muguruma K, Kubo N, Watanabe M, et al. Role of tumor-infiltrating CD11b+ antigen-presenting cells in the progression of gastric cancer. J Sur Res. 2014;186:192–200.

Article  CAS  Google Scholar 

Soeno T, Katoh H, Ishii S, Ushiku H, Hosoda K, Hiki N. CD33+ Immature myeloid cells critically predict recurrence in advanced gastric cancer. J Surg Res. 2020;245:552–63.

Article  CAS  PubMed  Google Scholar 

Miceli R, An J, Di Bartolomeo M, Morano F, Kim ST, Park SH, et al. Prognostic impact of microsatellite instability in Asian gastric cancer patients enrolled in the ARTIST trial. Oncology. 2019;97:38–43.

Article  CAS  PubMed  Google Scholar 

Hirai H, Yoshizawa T, Morohashi S, Haga T, Wu YY, Ota R, et al. Clinicopathological significance of gastric poorly differentiated medullary carcinoma. Biomed Res-Tokyo. 2016;37:77–84.

Article  CAS  Google Scholar 

Kawatoko S, Kohashi K, Torisu T, Sasaki T, Umekita S, Oki E, et al. Solid-type poorly differentiated adenocarcinoma of the stomach: a characteristic morphology reveals a distinctive immunoregulatory tumor microenvironment. Pathol Res Pract. 2022;238: 154124.

Article  CAS  PubMed  Google Scholar 

Ullrich KAM, Schulze LL, Paap EM, Muller TM, Neurath MF, Zundler S. Immunology of IL-12: an update of functional activities and implications for disease. Exceli J. 2020;19:1563–89.

Google Scholar 

Rafaeva M, Erler JT. Framing cancer progression: influence of the organ- and tumour-specific matrisome. FEBS J. 2020;287:1454–77.

Article  CAS  PubMed  Google Scholar 

Cheng WL, Wang CS, Huang YH, Tsai MM, Liang Y, Lin KH. Overexpression of CXCL1 and its receptor CXCR2 promote tumor invasion in gastric cancer. Ann Oncol. 2011;22:2267–76.

Article  PubMed  Google Scholar 

Kasashima H, Yashiro M, Nakamae H, Masuda G, Kinoshita H, Morisaki T, et al. Clinicopathologic significance of the CXCL1-CXCR2 axis in the tumor microenvironment of gastric carcinoma. PLoS One. 2017; https://doi.org/10.1371/journal.pone.0178635.

Chen JY, Lai YS, Chu PY, Chan SH, Wang LH, Hung WC. Cancer-Derived VEGF-C increases chemokine production in lymphatic endothelial cells to promote CXCR2-dependent cancer invasion and MDSC recruitment. Cancers. 2019;11:1120.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou X, Fang D, Liu H, Ou X, Zhang C, Zhao Z. PMN-MDSCs accumulation induced by CXCL1 promotes CD8+ T cells exhaustion in gastric cancer. Cancer Lett. 2022;532: 215598.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif