Cholinesterase activities and sepsis-associated encephalopathy in viral versus nonviral sepsis

Chen J, Shi X, Diao M, et al. A retrospective study of sepsis-associated encephalopathy: epidemiology, clinical features and adverse outcomes. BMC Emerg Med 2020; 20: 77. https://doi.org/10.1186/s12873-020-00374-3

Article  PubMed  PubMed Central  Google Scholar 

Eidelman LA, Putterman D, Putterman C, Sprung CL. The spectrum of septic encephalopathy: definitions, etiologies, and mortalities. JAMA 1996; 275: 470–3.

Article  CAS  PubMed  Google Scholar 

Robba C, Crippa IA, Taccone FS. Septic encephalopathy. Curr Neurol Neurosci Rep 2018; 18: 82. https://doi.org/10.1007/s11910-018-0895-6

Article  PubMed  Google Scholar 

Field RH, Gossen A, Cunningham C. Prior pathology in the basal forebrain cholinergic system predisposes to inflammation-induced working memory deficits: reconciling inflammatory and cholinergic hypotheses of delirium. J Neurosci 2012; 32: 6288–94. https://doi.org/10.1523/jneurosci.4673-11.2012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sonneville R, Verdonk F, Rauturier C, et al. Understanding brain dysfunction in sepsis. Ann Intensive Care 2013; 3: 15. https://doi.org/10.1186/2110-5820-3-15

Article  PubMed  PubMed Central  Google Scholar 

Tracey KJ. The inflammatory reflex. Nature 2002; 420: 853–9. https://doi.org/10.1038/nature01321

Article  ADS  CAS  PubMed  Google Scholar 

Borovikova LV, Ivanova S, Zhang M, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000; 405: 458–62. https://doi.org/10.1038/35013070

Article  ADS  CAS  PubMed  Google Scholar 

Bernik TR, Friedman SG, Ochani M, et al. Pharmacological stimulation of the cholinergic antiinflammatory pathway. J Exp Med 2002; 195: 781–8. https://doi.org/10.1084/jem.20011714

Article  CAS  PubMed  PubMed Central  Google Scholar 

Emch GS, Hermann GE, Rogers RC. TNF-alpha activates solitary nucleus neurons responsive to gastric distension. Am J Physiol Gastrointest Liver Physiol 2000; 279: G582–6. https://doi.org/10.1152/ajpgi.2000.279.3.g582

Article  CAS  PubMed  Google Scholar 

Blalock JE. Shared ligands and receptors as a molecular mechanism for communication between the immune and neuroendocrine systems. Ann N Y Acad Sci 1994; 741: 292–8. https://doi.org/10.1111/j.1749-6632.1994.tb23112.x

Article  ADS  CAS  PubMed  Google Scholar 

Capcha JM, Rodrigues CE, de Souza Moreira R, et al. Wharton's jelly-derived mesenchymal stem cells attenuate sepsis-induced organ injury partially via cholinergic anti-inflammatory pathway activation. Am J Physiol Regul Integr Comp Physiol 2020; 318: R135–47. https://doi.org/10.1152/ajpregu.00098.2018

Article  CAS  PubMed  Google Scholar 

Zujalovic B, Mayer B, Hafner S, Balling F, Barth E. AChE-activity in critically ill patients with suspected septic encephalopathy: a prospective, single-centre study. BMC Anesthesiol 2020; 20: 287. https://doi.org/10.1186/s12871-020-01204-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barth E, Bracht H, Georgieff M, Zujalovic B. AChE and BChE activity as guidance in pharmacological therapy of delirium and cognitive impairment in intensive care patients. Anästh Intensivmed 2019; 60: 233–42.

Google Scholar 

Atack JR, Perry EK, Bonham JR, Perry RH. Molecular forms of acetylcholinesterase and butyrylcholinesterase in human plasma and cerebrospinal fluid. J Neurochem 1987; 48: 1845–50. https://doi.org/10.1111/j.1471-4159.1987.tb05746.x

Article  CAS  PubMed  Google Scholar 

Ruberg M, Villageois A, Bonnet AM, Pillon B, Rieger F, Agid Y. Acetylcholinesterase and butyrylcholinesterase activity in the cerebrospinal fluid of patients with neurodegenerative diseases involving cholinergic systems. J Neurol Neurosurg Psychiatry 1987; 50: 538–43. https://doi.org/10.1136/jnnp.50.5.538

Article  CAS  PubMed  PubMed Central  Google Scholar 

García-Ayllón M-S, Riba-Llena I, Serra-Basante C, Alom J, Boopathy R, Sáez-Valero J. Altered levels of acetylcholinesterase in alzheimer plasma. PloS One 2010; 5: e8701. https://doi.org/10.1371/journal.pone.0008701

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Davis L, Britten JJ, Morgan M. Cholinesterase: its significance in anaesthetic practice. Anaesthesia 1997; 52: 244–60. https://doi.org/10.1111/j.1365-2044.1997.084-az0080.x

Article  CAS  PubMed  Google Scholar 

Lampón N, Hermida-Cadahia EF, Riveiro A, Tutor JC. Association between butyrylcholinesterase activity and low-grade systemic inflammation. Ann Hepatol 2012; 11: 356–63.

Article  PubMed  Google Scholar 

Cohen J, Vincent JL, Adhikari NK, et al. Sepsis: a roadmap for future research. Lancet Infect Dis 2015; 15: 581–614. https://doi.org/10.1016/s1473-3099(15)70112-x

Article  PubMed  Google Scholar 

World Health Organization. Severity of disease associated with Omicron variant as compared with Delta variant in hospitalized patients with suspected or confirmed SARS-CoV-2 infection; 2022. Available from URL: https://www.who.int/publications/i/item/9789240051829 (accessed October 2023).

Morris G, Bortolasci CC, Puri BK, et al. The cytokine storms of COVID-19, H1N1 influenza, CRS and MAS compared. Can one sized treatment fit all? Cytokine 2021; 144: 155593. https://doi.org/10.1016/j.cyto.2021.155593

Espeter F, Künne D, Garczarek L, et al. Critically ill COVID-19 patients show reduced point of care-measured butyrylcholinesterase activity—a prospective, monocentric observational study. Diagnostics (Basel) 2022; 12: 2150. https://doi.org/10.3390/diagnostics12092150

Article  CAS  PubMed  Google Scholar 

Coldewey SM, Neu C, Baumbach P, et al. Identification of cardiovascular and molecular prognostic factors for the medium-term and long-term outcomes of sepsis (ICROS): protocol for a prospective monocentric cohort study. BMJ Open 2020; 10: e036527. https://doi.org/10.1136/bmjopen-2019-036527

Article  PubMed  PubMed Central  Google Scholar 

Neu C, Baumbach P, Scherag A, Kortgen A, Gotze J, Coldewey SM. Identification of cardiovascular and molecular prognostic factors for the morbidity and mortality in COVID-19-sepsis (ICROVID): protocol for a prospective multi-centre cohort study. PLoS One 2022; 17: e0269247. https://doi.org/10.1371/journal.pone.0269247

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016; 315: 801–10. https://doi.org/10.1001/jama.2016.0287

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chung HY, Wickel J, Brunkhorst FM, Geis C. Sepsis-associated encephalopathy: from delirium to dementia? J Clin Med 2020; 9: 703. https://doi.org/10.3390/jcm9030703

Article  PubMed  PubMed Central  Google Scholar 

Eidelman LA, Putterman D, Putterman C, Sprung CL. The spectrum of septic encephalopathy. Definitions, etiologies, and mortalities. JAMA 1996; 275: 470–3.

Sonneville R, de Montmollin E, Poujade J, et al. Potentially modifiable factors contributing to sepsis-associated encephalopathy. Intensive Care Med 2017; 43: 1075–84. https://doi.org/10.1007/s00134-017-4807-z

Article  PubMed  Google Scholar 

Yang Y, Liang S, Geng J, et al. Development of a nomogram to predict 30-day mortality of patients with sepsis-associated encephalopathy: a retrospective cohort study. J Intensive Care 2020; 8: 45. https://doi.org/10.1186/s40560-020-00459-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ellman GL, Courtney KD, Andres V Jr, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961; 7: 88–95. https://doi.org/10.1016/0006-2952(61)90145-9

Article  CAS  PubMed  Google Scholar 

Worek F, Mast U, Kiderlen D, Diepold C, Eyer P. Improved determination of acetylcholinesterase activity in human whole blood. Clin Chim Acta 1999; 288: 73–90. https://doi.org/10.1016/s0009-8981(99)00144-8

Article  CAS  PubMed  Google Scholar 

Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 1993; 39: 561–77.

Article  CAS  PubMed  Google Scholar 

Schisterman EF, Perkins NJ, Liu A, Bondell H. Optimal cut-point and its corresponding Youden Index to discriminate individuals using pooled blood samples. Epidemiology 2005; 16: 73–81. https://doi.org/10.1097/01.ede.0000147512.81966.ba

Article  PubMed  Google Scholar 

Santarpia L, Grandone I, Contaldo F, Pasanisi F. Butyrylcholinesterase as a prognostic marker: a review of the literature. J Cachexia Sarcopenia Muscle 2013; 4: 31–9. https://doi.org/10.1007/s13539-012-0083-5

Article  PubMed  Google Scholar 

Courties A, Boussier J, Hadjadj J, et al. Regulation of the acetylcholine/alpha7nAChR anti-inflammatory pathway in COVID-19 patients. Sci Rep 2021; 11: 11886. https://doi.org/10.1038/s41598-021-91417-7

Article  ADS  CAS  PubMed 

留言 (0)

沒有登入
gif