Production of Bacterial Cellulose by Cocultivation of Komagataeibacter sucrofermentans with Producers of Dextran Leuconostoc mesenteroides and Xanthan Xanthomonas campestris

Revin, V.V., Liyaskina, E.V., Parchaykina, M.V., Kuzmenko, T.P., Kurgaeva, I.V., Revin, V.D., and Ullah, M.W., Bacterial cellulose-based polymer nanocomposites: A review, Polymers, 2022, vol. 14, p. 4670. https://doi.org/10.3390/polym14214670

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moniri, M., Boroumand Moghaddam, A., Azizi, S., Rahim, R., Ariff, A., Saad, W., and Mohamad, R., Production and status of bacterial cellulose in biomedical engineering, Nanomaterials, 2017, vol. 7, no. 9, pp. 257–283. https://doi.org/10.3390/nano7090257

Article  CAS  PubMed  PubMed Central  Google Scholar 

Revin, V.V., Nazarova, N.B., Tsareva, E.E., Liyaskina, E.V., Revin, V.D., and Pestov, N.A., Production of bacterial cellulose aerogels with improved physico-mechanical properties and antibacterial effect, Front. Bioeng. Biotechnol., 2020, vol. 8, no. 3, p. 603407. https://doi.org/10.3389/fbioe.2020.603407

Article  PubMed  PubMed Central  Google Scholar 

Rangaswamy, B.E., Vanith, K.P., and Hungund, B.S., Microbial cellulose production from bacteria isolated from rotten fruit, Int. J. Polym. Sci., 2015, vol. 15, p. 280784. https://doi.org/10.1155/2015/280784

Skvortsova, Z.N., Gromovykh, T.I., Grachev, V.S., and Traskin, V.Yu., Physicochemical mechanics of bacterial cellulose, Colloid J., 2019, vol. 81, no. 4, pp. 336–376. https://doi.org/10.1134/S1061933X19040161

Article  Google Scholar 

Blanco Parte, F.G., Santoso, S.P., Chou, C.C., Verma, V., Wang, H.T., Ismadji, S., and Cheng, K.C., Current progress on the production, modification, and applications of bacterial cellulose, Crit. Rev. Biotechnol., 2020, vol. 40, no. 16, pp. 397–414. https://doi.org/10.1080/07388551.2020.1713721

Ahmed, J., Gultekinoglu, M., and Edirisinghe, M., Bacterial cellulose micro-nano fibres for wound healing applications, Biotechnol. Adv., 2020, vol. 41, no. 8, p. 107549. https://doi.org/10.1016/j.biotechadv.2020.107549

Kiselyova, O.I., Lutsenko, S.V., Feldman, N.B., Gavryushina, I.A., Sadykova, V.S., Pigaleva, M.A., Rubina, M.S., and Gromovykh, T.I., The structure of Gluconacetobacter hansenii GH 1/2008 population cultivated in static conditions on various sources of carbon, Vestn. Tomsk. Gos. Univ., Biol., 2021, vol. 53, pp. 22–46. https://doi.org/10.17223/19988591/53/2

Revin, V.V., Liyaskina, E.V., Sapunova, N.B., and Bogatyreva, A.O., Isolation and characterization of the strains producing bacterial cellulose, Microbiology, 2020, vol. 89, no. 1, pp. 86–95. https://doi.org/10.1134/S0026261720010130

Article  CAS  Google Scholar 

Gorgieva, S. and Trček, J., Bacterial cellulose: Production, modification and perspectives in biomedical applications, Nanomaterials, 2019, vol. 9, no. 10, pp. 1352–1372. https://doi.org/10.3390/nano9101352

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ullah, H., Wahid, F., Santos, H.A., and Khan, T., Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites, Carbohydr. Polym., 2016, vol. 150, pp. 330–352. https://doi.org/10.1016/j.carbpol.2016.05.029

Article  CAS  PubMed  Google Scholar 

Singhsa, P., Narain, R., and Manuspiya, H., Physical structure variations of bacterial cellulose produced by different Komagataeibacter xylinus strains and carbon sources in static and agitated conditions, Cellulose, 2018, vol. 25, pp. 1571–1581. https://doi.org/10.1007/s10570-018-1699-1

Article  CAS  Google Scholar 

Sulaeva, I., Henniges, U., and Rosenau, T., Bacterial cellulose as a material for wound treatment: Properties and modifications. A review, Biotechnol. Adv., 2015, vol. 33, pp. 1547–1571. https://doi.org/10.1016/j.biotechadv.2015.07.009

Article  CAS  PubMed  Google Scholar 

Hussain, Z., Sajjad, W., and Khan, T., Production of bacterial cellulose from industrial wastes: A review, Cellulose, 2019, vol. 26, pp. 2895–2911. https://doi.org/10.1007/s10570-019-02307-1

Article  CAS  Google Scholar 

Lee, K.Y., Buldum, G., Mantalaris, A., and Bismarck, A., More than meets the eye in bacterial cellulose: Biosynthesis, bioprocessing, and applications in advanced fiber composites, Macromol. Biosci., 2014, vol. 14, pp. 10–32. https://doi.org/10.1002/mabi.201300298

Article  CAS  PubMed  Google Scholar 

Revin, V.V., Liyaskina, E.V., and Pestov, N.A., Poluchenie bakterial’noi tsellyulozy i nanokompozitsionnykh materialov (Production of Bacterial Cellulose and Nanocomposite Materials), Saransk: Mord. Gos. Univ., 2014.

Google Scholar 

Revin, V.V., Dolganov, A.V., Liyaskina, E.V., Nazarova, N.B., Balandina, A.V., Devyataeva, A.A., and Revin, V.D., Characterizing bacterial cellulose produced by Komagataeibacter sucrofermentans H-110 on molasses medium and obtaining a biocomposite based on it for the adsorption of fluoride, Polymers, 2021, vol. 13, no. 9, p. 1422. https://doi.org/10.3390/polym13091422

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pang, M., Huang, Y., Meng, F., Zhuang, Y., Liu, H., Du, M., Ma, Q., Wang, Q., Chen, Z., Chen, L., Cai, T., and Cai, Y., Application of bacterial cellulose in skin and bone tissue engineering, Eur. Polym. J., 2020, vol. 122, p. 109365. https://doi.org/10.1016/j.eurpolymj.2019.109365

Article  CAS  Google Scholar 

Khan, S., Ul-Islam, M., Ullah, M.W., Zhu, Y., Narayanan, K.B., Han, S.S., and Park, J.K., Fabrication strategies and biomedical applications of three-dimensional bacterial cellulose-based scaffolds: A review, Int. J. Biol. Macromol., 2022, vol. 209, pp. 9–30. https://doi.org/10.1016/j.ijbiomac.2022.03.191

Article  CAS  PubMed  Google Scholar 

Volova, T.G., Prudnikova, S.V., Kiselev, E.G., Nemtsev, I.V., Vasiliev, A.D., Kuzmin, A.P., and Shishats-kaya, E.I., Bacterial cellulose (BC) and BC composites: Production and properties, Nanomaterials, 2022, vol. 12, p. 192. https://doi.org/10.3390/nano12020192

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, W., Due, H., Zhang, M., Liu, K., Liu, H., Xie, H., Zhang, X., and Si, C., Bacterial cellulose based composite scaffolds for biomedical applications: A review, ACS Sustainable Chem. Eng., 2020, vol. 8, pp. 7536–7562. https://doi.org/10.1021/acssuschemeng.0c00125

Article  CAS  Google Scholar 

Solomevich, S.O., Dmitruk, E.I., Bychkovsky, P.M., Nebytov, A.E., Yurkshtovich, T.L., and Golub, N.V., Fabrication of oxidized bacterial cellulose by nitrogen dioxide in chloroform/cyclohexane as a highly loaded drug carrier for sustained release of cisplatin, Carbohydr. Polym., 2020, vol. 248, p. 116745. https://doi.org/10.1016/j.carbpol.2020.116745

Article  CAS  PubMed  Google Scholar 

Carvalho, T., Guedes, G., Sousa, F.L., Freire, C.S.R., and Santos, H.A., Latest advances on bacterial cellulose-based materials for wound healing, delivery systems, and tissue engineering, Biotechnol. J., 2019, vol. 14, p. 1900059. https://doi.org/10.1002/biot.201900059

Article  CAS  Google Scholar 

Lin, D., Lopez-Sanchez, P., Li, R., and Li, Z., Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source, Bioresour. Technol., 2014, vol. 151, pp. 113–119. https://doi.org/10.1016/j.biortech.2013.10.052

Article  CAS  PubMed  Google Scholar 

Islam, M.U., Ullah, M.W., Khan, S., Shah, N., and Park, J.K., Strategies for cost-effective and enhanced production of bacterial cellulose, Int. J. Biol. Macromol., 2017, vol. 102, pp. 1166–1173. https://doi.org/10.1016/j.ijbiomac.2017.04.110

Article  CAS  PubMed  Google Scholar 

Revin, V., Liyaskina, E., Nazarkina, M., Bogatyreva, A., and Shchankin, M., Cost-effective production of bacterial cellulose using acidic food industry by-products, Braz. J. Microbiol., 2018, vol. 49, no. 1, pp. 151–159.https://doi.org/10.1016/j.bjm.2017.12.012

Ishida, T., Mitarai, M., Sugano, Y., and Shoda, M., Role of water-soluble polysaccharides in bacterial cellulose production, Biotechnol. Bioeng., 2003, vol. 83, pp. 474–478. https://doi.org/10.1002/bit.10690

Article  CAS  PubMed  Google Scholar 

Marmann, A., Aly, A., Lin, W., Wang, B., and Proksch, P., Co-cultivation—A powerful emerging tool for enhancing the chemical diversity of microorganisms, Mar. Drugs, 2014, vol. 12, no. 2, pp. 1043–1065. https://doi.org/10.3390/md12021043

Article  CAS  PubMed  PubMed Central  Google Scholar 

Revin, V.V., Liyaskina, E.V., Pokidko, B.V., Pimenov, N.V., Mardanov, A.V., and Ravin, N.V., Characteristics of the new xanthan-producing strain Xanthomonas campestris M 28: Study of the genome, cultivation conditions, and physicochemical and rheological properties of the polysaccharide, Appl. Biochem. Microbiol., 2021, vol. 57, no. 3, pp. 356–365. https://doi.org/10.31857/S0555109921030107

Article  CAS  Google Scholar 

Wu, R.Q., Li, Z.X., Yang, J.P., Xing, X.H., Shao, D.Y., and Xing, K.L., Mutagenesis induced by high hydrostatic pressure treatment: A useful method to improve the bacterial cellulose yield of a Gluconacetobacter xylinus strain, Cellulose, 2009, vol. 17, pp. 399–405. https://doi.org/10.1007/s10570-009-9388-8

Article  CAS  Google Scholar 

Castro, C., Zuluaga, R., Putaux, J.L., Caro, G., Mondragon, I., and Ganan, P., Structural characterization of bacterial cellulose produced by Komagataeibacter swingsii sp. from Colombian agroindustrial wastes, Carbohydr. Polym., 2011, vol. 84, pp. 96–102. https://doi.org/10.1016/j.carbpol.2010.10.072

Article  CAS  Google Scholar 

Ciolacu, D., Ciolacu, F., and Popa, V.I., Amorphous cellulose—Structure and characterization, Cellul. Chem. Technol., 2011, vol. 45, no. 1, pp. 13–21.

CAS  Google Scholar 

Keshk, S. and Sameshima, K., Influence of lignosulfonate on crystal structure and productivity of bacterial cellulose in a static culture, Enzyme Microb. Technol., 2006, vol. 40, pp. 4–8. https://doi.org/10.1016/j.enzmictec.2006.07.037

Article  CAS  Google Scholar 

Seto, A. and Saito, Y., Effective cellulose production by a coculture of Komagataeibacter xylinus and Lactobacillus mali, Appl. Microbiol. Biotechnol., 2006, vol. 73, no. 4, pp. 915–992. https://doi.org/10.1007/s00253-006-0515-2

Article  CAS  PubMed  Google Scholar 

Sapunova, N.B., Bogatyreva, A.O., Shchankin, M.V., Liyaskina, E.V., and Revin, V.V., Preparation of bacterial cellulose on a medium with molasses, Vestn. Tekhnol. Univ., 2016, vol. 1, no. 24, pp. 154–156.

Google Scholar 

Czaja, W., Romanovicz, D., and Brown, R., Structural investigations of microbial cellulose produced in stationary and agitated culture, Cellulose, 2004, vol. 11, pp. 403–411. https://doi.org/10.1023/B:CELL.0000046412.11983.61

Article  CAS  Google Scholar 

Castro, C., Zuluaga, R., Álvarez, C., Putaux, J., Caro, G., Rojas, O.J., Mondragon, I., and Gañán, P., Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus, Carbohydr. Polym., 2012, vol. 89, pp. 1033–1037. https://doi.org/10.1016/j.carbpol.2012.03.045

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif