Astrocytic accumulation of tau fibrils isolated from Alzheimer’s disease brains induces inflammation, cell-to-cell propagation and neuronal impairment

Ahmed Z, Cooper J, Murray TK, Garn K, McNaughton E, Clarke H, Parhizkar S, Ward MA, Cavallini A, Jackson S, Bose S, Clavaguera F, Tolnay M, Lavenir I, Goedert M, Hutton ML, O’Neill MJ (2014) A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity. Acta Neuropathol 127:667–683. https://doi.org/10.1007/S00401-014-1254-6/FIGURES/5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alonso ADC, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K (2001) Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci U S A 98:6923–6928. https://doi.org/10.1073/PNAS.121119298

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Bachstetter AD, Norris CM, Sompol P, Wilcock DM, Goulding D, Neltner JH, Daret S, Watterson DM, van Eldik LJ (2012) Early Stage Drug Treatment that normalizes Proinflammatory Cytokine Production attenuates synaptic dysfunction in a mouse model that exhibits age-dependent progression of Alzheimer’s Disease-Related Pathology. J Neurosci 32:10201–10210. https://doi.org/10.1523/JNEUROSCI.1496-12.2012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Binder LI, Frankfurter A, Rebhun LI (1985) The distribution of tau in the mammalian central nervous system. J Cell Biol 101:1371–1378. https://doi.org/10.1083/JCB.101.4.1371

Article  CAS  PubMed  Google Scholar 

Braak H, Del Tredici K (2011) Alzheimer’s pathogenesis: is there neuron-to-neuron propagation? Acta Neuropathol 121:589–595. https://doi.org/10.1007/S00401-011-0825-Z/FIGURES/2

Article  CAS  PubMed  Google Scholar 

Braak H, Thal DR, Ghebremedhin E, Del Tredici K (2011) Stages of the pathologic process in Alzheimer Disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 70:960–969. https://doi.org/10.1097/NEN.0B013E318232A379

Article  CAS  PubMed  Google Scholar 

Caballero B, Wang Y, Diaz A, Tasset I, Juste YR, Stiller B, Mandelkow EM, Mandelkow E, Cuervo AM (2018) Interplay of pathogenic forms of human tau with different autophagic pathways. Aging Cell 17:e12692. https://doi.org/10.1111/ACEL.12692

Article  PubMed  Google Scholar 

Calvo-Garrido J, Winn D, Maffezzini C, Wedell A, Freyer C, Falk A, Wredenberg A (2021) Protocol for the derivation, culturing, and differentiation of human iPS-cell-derived neuroepithelial stem cells to study neural differentiation in vitro. STAR Protoc 2:100528. https://doi.org/10.1016/J.XPRO.2021.100528

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ceyzériat K, Ben Haim L, Denizot A, Pommier D, Matos M, Guillemaud O, Palomares MA, Abjean L, Petit F, Gipchtein P, Gaillard MC, Guillermier M, Bernier S, Gaudin M, Aurégan G, Joséphine C, Déchamps N, Veran J, Langlais V, Cambon K, Bemelmans AP, Baijer J, Bonvento G, Dhenain M, Deleuze JF, Oliet SHR, Brouillet E, Hantraye P, Carrillo-de Sauvage MA, Olaso R, Panatier A, Escartin C (2018) Modulation of astrocyte reactivity improves functional deficits in mouse models of Alzheimer’s disease. Acta Neuropathol Commun 6:104. https://doi.org/10.1186/S40478-018-0606-1

Article  PubMed  PubMed Central  Google Scholar 

Chatterjee S, Sealey M, Ruiz E, Pegasiou CM, Brookes K, Green S, Crisford A, Duque-Vasquez M, Luckett E, Robertson R, Richardson P, Vajramani G, Grundy P, Bulters D, Proud C, Vargas-Caballero M, Mudher A (2023) Age-related changes in tau and autophagy in human brain in the absence of neurodegeneration. PLoS ONE 18:e0262792. https://doi.org/10.1371/JOURNAL.PONE.0262792

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cherry JD, Esnault CD, Baucom ZH, Tripodis Y, Huber BR, Alvarez VE, Stein TD, Dickson DW, McKee AC (2021) Tau isoforms are differentially expressed across the hippocampus in chronic traumatic encephalopathy and Alzheimer’s disease. Acta Neuropathol Commun 9:1–17. https://doi.org/10.1186/S40478-021-01189-4/FIGURES/11

Article  Google Scholar 

Clarke J, Kayatekin C, Viel C, Shihabuddin L, Sardi SP (2021) Murine models of lysosomal storage diseases exhibit differences in brain protein aggregation and neuroinflammation. Biomedicines 9:446. https://doi.org/10.3390/BIOMEDICINES9050446/S1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crowther RA (1991) Straight and paired helical filaments in Alzheimer disease have a common structural unit (neuroflIriary tangles/neuropathdology/antibody labeling/electron microscopy/image processing). Proc Nati Acad Sci USA 88:2288–2292

Article  ADS  CAS  Google Scholar 

Dai DL, Li M, Lee EB (2023) Human Alzheimer’s disease reactive astrocytes exhibit a loss of homeostastic gene expression. Acta Neuropathol Commun 11:1–19. https://doi.org/10.1186/S40478-023-01624-8/FIGURES/6

Article  Google Scholar 

Falcon B, Zhang W, Schweighauser M, Murzin AG, Vidal R, Garringer HJ, Ghetti B, Scheres SHW, Goedert M (2018) Tau filaments from multiple cases of sporadic and inherited Alzheimer’s disease adopt a common Fold. Acta Neuropathol 136:699–708. https://doi.org/10.1007/S00401-018-1914-Z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Falcon B, Zhang W, Murzin AG, Murshudov G, Garringer HJ, Vidal R, Crowther RA, Ghetti B, Scheres SHW, Goedert M (2018) Structures of filaments from pick’s disease reveal a novel tau protein fold. Nat 2018 561:7721. https://doi.org/10.1038/s41586-018-0454-y

Article  CAS  Google Scholar 

Falcon B, Zivanov J, Zhang W, Murzin AG, Garringer HJ, Vidal R, Crowther RA, Newell KL, Ghetti B, Goedert M, Scheres SHW (2019) Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature 568:420–423. https://doi.org/10.1038/S41586-019-1026-5

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Falk A, Koch P, Kesavan J, Takashima Y, Ladewig J, Alexander M, Wiskow O, Tailor J, Trotter M, Pollard S, Smith A, Brüstle O (2012) Capture of Neuroepithelial-Like Stem cells from pluripotent stem cells provides a versatile system for in Vitro production of human neurons. PLoS ONE 7:e29597. https://doi.org/10.1371/JOURNAL.PONE.0029597

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Fitzpatrick AWP, Falcon B, He S, Murzin AG, Murshudov G, Garringer HJ, Crowther RA, Ghetti B, Goedert M, Scheres SHW (2017) Cryo-EM structures of tau filaments from Alzheimer’s disease. Nat 2017 547:7662. https://doi.org/10.1038/nature23002

Article  CAS  Google Scholar 

Frost B, Jacks RL, Diamond MI (2009) Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem 284:12845–12852. https://doi.org/10.1074/jbc.M808759200

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goedert M, Jakes R (1990) Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization. EMBO J 9:4225–4230. https://doi.org/10.1002/J.1460-2075.1990.TB07870.X

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goedert M, Wischik CM, Crowther RA, Walker JE, Klug A (1988) Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci 85:4051–4055. https://doi.org/10.1073/PNAS.85.11.4051

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Goedert M, Spillantini MG, Cairns NJ, Crowther RA (1992) Tau proteins of Alzheimer Paired Helical filaments: abnormal phosphorylation of all six brain lsoforms I. Neuron 8:159–168

Article  CAS  PubMed  Google Scholar 

Gomez-Arboledas A, Davila JC, Sanchez-Mejias E, Navarro V, Nuñez-Diaz C, Sanchez-Varo R, Sanchez-Mico MV, Trujillo-Estrada L, Fernandez-Valenzuela JJ, Vizuete M, Comella JX, Galea E, Vitorica J, Gutierrez A (2018) Phagocytic clearance of presynaptic dystrophies by reactive astrocytes in Alzheimer’s disease. Glia 66:637–653. https://doi.org/10.1002/GLIA.23270

Article  PubMed  Google Scholar 

Greenberg SG, Davies P, Schein JD, Binder LI (1992) Hydrofluoric acid-treated tau PHF proteins display the same biochemical properties as normal tau. J Biol Chem 267:564–569. https://doi.org/10.1016/S0021-9258(18)48531-6

Article  CAS  PubMed  Google Scholar 

Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proceedings of the National Academy of Sciences 83:4913–4917. https://doi.org/10.1073/PNAS.83.13.4913

Hulshof LA, van Nuijs D, Hol EM, Middeldorp J (2022) The role of astrocytes in synapse loss in Alzheimer’s Disease: a systematic review. Front Cell Neurosci 16:899251. https://doi.org/10.3389/FNCEL.2022.899251/BIBTEX

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ihara Y, Nukina N, Miura R, Ogawara M (1986) Phosphorylated tau protein is integrated into paired helical filaments in Alzheimer’s disease. J Biochem 99:1807–1810. https://doi.org/10.1093/OXFORDJOURNALS.JBCHEM.A135662

Article  CAS  PubMed  Google Scholar 

Ikeda K, Haga C, Akiyama H, Kase K, Iritani S (1992) Coexistence of paired helical filaments and glial filaments in astrocytic processes within ghost tangles. Neurosci Lett 148:126–128. https://doi.org/10.1016/0304-3940(92)90820-W

Article  CAS  PubMed  Google Scholar 

Kondo J, Honda T, Mori H, Hamada Y, Miura R, Ogawara M, Ihara Y (1988) The carboxyl third of tau is tightly bound to paired helical filaments. Neuron 1:827–834. https://doi.org/10.1016/0896-6273(88)90130-4

Article  CAS  PubMed

留言 (0)

沒有登入
gif