Evolution of ancient satellite DNAs in extant alligators and caimans (Crocodylia, Reptilia)

Biémont C, Vieira C. Junk DNA as an evolutionary force. Nature. 2006. https://doi.org/10.1038/443521a.

Article  PubMed  Google Scholar 

López-Flores I, Garrido-Ramos MA. The repetitive DNA content of eukaryotic genomes. In: Garrido-Ramos MA, editor. Repetitive DNA. Basel: Karger; 2012. p. 1–28.

Google Scholar 

Plohl M, Meštrović N, Mravinac B. Centromere identity from the DNA point of view. Chromosoma. 2014. https://doi.org/10.1007/s00412-014-0462-0.

Article  PubMed  PubMed Central  Google Scholar 

Garrido-Ramos MA. Satellite DNA: An evolving topic. Genes. 2017. https://doi.org/10.3390/genes8090230.

Article  PubMed  PubMed Central  Google Scholar 

Garrido-Ramos MA. The genomics of plant satellite DNA. In: Ugarković Ð, editor. Satellite DNAs in Physiology and Evolution, Progress in Molecular and Subcellular Biology. Springer: Cham; 2021. p. 103–44.

Chapter  Google Scholar 

Ruiz-Ruano F, López-Leon MD, Cabrero J, Camacho JPM. High-throughput analysis of the satellitome illuminates satellite DNA evolution. Sci Rep. 2016. https://doi.org/10.1038/srep28333.

Article  PubMed  PubMed Central  Google Scholar 

Csink AK, Henikoff S. Something from nothing: the evolution and utility of satellite repeats. Trends Genet. 1998. https://doi.org/10.1016/S0168-9525(98)01444-9.

Article  PubMed  Google Scholar 

Kuhn GCS, Sene FM, Moreira-Filho O, Schwarzacher T, Heslop-Harrison JS. Sequence analysis, chromosomal distribution and long-range organization show that rapid turnover of new and old pBuM satellite DNA repeats leads to different patterns of variation in seven species of the Drosophila buzzatii cluster. Chromosome Res. 2008. https://doi.org/10.1007/s10577-007-1195-1.

Article  PubMed  Google Scholar 

Kuhn GCS, Schwarzacher T, Heslop-Harrison JS. The non-regular orbit: three satellite DNAs in Drosophila martensis (buzzatii complex, repleta group) followed three different evolutionary pathways. Mol Genet Genom. 2010. https://doi.org/10.1007/s00438-010-0564-1.

Article  Google Scholar 

Plohl M, Meštrović N, Mravinac B. Satellite DNA evolution. In: Garrido-Ramos MA, editor. Repetitive DNA. Basel: Karger; 2012. p. 126–52.

Chapter  Google Scholar 

Feliciello I, Akrap I, Ugarković Ð. Satellite DNA modulates gene expression in the beetle Tribolium castaneum after heat stress. PLoS Genet. 2015. https://doi.org/10.1371/journal.pgen.1005466.

Article  PubMed  PubMed Central  Google Scholar 

Prakhongcheep O, Thapana W, Suntronpong A, Singchat W, Pattanatanang K, Phatcharakullawarawat R, Muangmai N, Peyachoknagul S, Matsubara K, Ezaz T, Srikulnath K. Lack of satellite DNA species-specific homogenization and relationship to chromosomal rearrangements in monitor lizards (Varanidae, Squamata). BMC Evol Biol. 2017. https://doi.org/10.1186/s12862-017-1044-6.

Article  PubMed  PubMed Central  Google Scholar 

Palacios-Gimenez OM, Dias GB, de Lima LG, Campos G, Kuhn S, Ramos E, Martins C, Cabral-de-Mello DC. High-throughput analysis of the satellitome revealed enormous diversity of satellite DNAs in the neo-Y chromosome of the cricket Eneoptera surinamensis. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-06822-8.

Article  PubMed  PubMed Central  Google Scholar 

Feliciello I, Chinali G, Ugarković Ð. Structure and population dynamics of the major satellite DNA in the red flour beetle Tribolium castaneum. Genetica. 2011. https://doi.org/10.1007/s10709-011-9601-1.

Article  PubMed  Google Scholar 

Kuhn GCS, Küttler H, Moreira-Filho O, Heslop-Harrison JS. The 1.668 repetitive DNA of Drosophila: Concerted evolution at different genomic scales and association with genes. Mol Biol Evol. 2012 https://doi.org/10.1093/molbev/msr173.

Brajković J, Feliciello I, Bruvo-Mađarić B, Ugarković Ð. Satellite DNA-Like elements associated with genes within euchromatin of the beetle Tribolium castaneum. G3: Genes, Genomes, Genetics 2012 https://doi.org/10.1534/g3.112.003467.

Larracuente AM. The organization and evolution of the Responder satellite in species of the Drosophila melanogaster group: dynamic evolution of a target of meiotic drive. BMC Ecol Evol. 2014. https://doi.org/10.1186/s12862-014-0233-9.

Article  Google Scholar 

Pavlek M, Gelfand Y, Plohl M, Meštrović N. Genome-wide analysis of tandem repeats in Tribolium castaneum genome reveals abundant and highly dynamic tandem repeat families with satellite DNA features in euchromatic chromosomal arms. DNA Res. 2015. https://doi.org/10.1093/dnares/dsv021.

Article  PubMed  PubMed Central  Google Scholar 

Pita S, Panzera F, Mora P, Vela J, Cuadrado A, Sánchez A, Palomeque T, Lorite P. Comparative repeatome analysis on Triatoma infestans Andean and Non-Andean lineages, main vector of Chagas disease. PLoS ONE. 2017. https://doi.org/10.1371/journal.pone.0181635.

Article  PubMed  PubMed Central  Google Scholar 

de Lima L.G, Svartman M, Kuhn GCS. Dissecting the satellite DNA landscape in three cactophilic Drosophila sequenced genomes. G3. 2017 https://doi.org/10.1534/g3.117.042093.

Robledillo LÁ, Neumann P, Koblížková A, Novák P, Vrbová I, Macas J. Extraordinary sequence diversity and promiscuity of centromeric satellites in the legume tribe Fabeae. Mol Biol Evol. 2020. https://doi.org/10.1093/molbev/msaa090.

Article  Google Scholar 

Milani D, Ruiz-Ruano FJ, Camacho JPM, Cabral-de-Mello DC. Out of patterns, the euchromatic B chromosome of the grasshopper Abacris flavolineata is not enriched in high-copy repeats. Heredity. 2021. https://doi.org/10.1038/s41437-021-00470-5.

Article  PubMed  PubMed Central  Google Scholar 

Šatović-Vukšić E, Plohl M. Satellite DNAs-From localized to highly dispersed genome components. Genes. 2023. https://doi.org/10.3390/genes14030742.

Article  PubMed  PubMed Central  Google Scholar 

Joshi SS, Meller VH. Satellite repeats identify X chromatin for dosage compensation in Drosophila melanogaster males. Curr Biol. 2017. https://doi.org/10.1016/j.cub.2017.03.078.

Article  PubMed  PubMed Central  Google Scholar 

Rošić S, Köhler F, Erhardt S. Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division. J Cell Biol. 2014. https://doi.org/10.1083/jcb.201404097.

Article  PubMed  PubMed Central  Google Scholar 

Ugarkovic D. Functional elements residing within satellite DNAs. EMBO Rep. 2005. https://doi.org/10.1083/jcb.201404097.

Article  PubMed  PubMed Central  Google Scholar 

Pathak R, Mamillapalli A, Rangaraj N, Kumar R, Vasanthi D, Mishra K, Mishra R. AAGAG repeat RNA is an essential component of nuclear matrix in Drosophila. RNA Biol. 2013. https://doi.org/10.4161/rna.24326.

Article  PubMed  PubMed Central  Google Scholar 

Jagannathan M, Cummings R, Yamashita YM. A conserved function for pericentromeric satellite DNA. eLife 2018 https://doi.org/10.7554/eLife.34122.

Jagannathan M, Cummings R, Yamashita YM. The modular mechanism of chromocenter formation in Drosophila. eLife 2019 https://doi.org/10.7554/eLife.43938.

Graphodatsky AS. Comparative chromosomics. Mol Biol. 2007;41:361–75.

Article  CAS  Google Scholar 

Deakin JE, Potter S, O’Neill R, Ruiz-Herrera A, Cioffi MB, Eldridge MDB, Fukui K, Graves JAM, Griffin D, Grutzner F, Kratochvíl L, Miura I, Rovatsos M, Srikulnath K, Wapstra E, Ezaz T. Chromosomics: Bridging the gap between genomes and chromosomes. Genes. 2019. https://doi.org/10.3390/genes10080627.

Article  PubMed  PubMed Central  Google Scholar 

dos Santos RZ, Calegari RM, Silva DMZA, Ruiz-Ruano FJ, Melo S, Oliveira C, Foresti F, Uliano-Silva M, Porto-Foresti F, Utsunomia R. A long-term conserved satellite DNA that remains unexpanded in several genomes of Characiformes fish is actively transcribed. Genome Biol Evol. 2021. https://doi.org/10.1093/gbe/evab002.

Article  PubMed  PubMed Central  Google Scholar 

Rovatsos M, Kratochvíl L, Altmanová M, Pokorná MJ. Interstitial telomeric motifs in squamates reptiles: When the exceptions outnumber the rule. PLoS ONE. 2015. https://doi.org/10.1371/journal.pone.0134985.

Article  PubMed  PubMed Central  Google Scholar 

Kretschmer R, Goes CAG, Bertollo LAC, Ezaz T, Porto-Foresti F, Toma GA, Utsunomia R, Cioffi MB. Satellitome analysis illuminates the evolution of ZW sex chromosomes of Triportheidae fishes (Teleostei: Characiformes). Chromosoma. 2022. https://doi.org/10.1007/s00412-022-00768-1.

Article  PubMed  Google Scholar 

Novák P, Neumann JP, Steinhaisl J, Macas J. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinform. 2013. https://doi.org/10.1093/bioinformatics/btt054.

Article  Google Scholar 

Novák P, Robledillo LA, Koblížková A, Vrbová I, Neumann P, Macas J. TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res. 2017. https://doi.org/10.1093/nar/gkx257.

Article  PubMed  PubMed Central  Google Scholar 

Harris RS, Cechova M, Makova KD. Noise-cancelling repeat finder: uncovering tandem repeats in error-prone long-read sequencing data. Bioinform. 2019. https://doi.org/10.1093/bioinformatics/btz484.

Article  Google Scholar 

Vondrak T, Robledillo LA, Novák P, Koblížková A, Neumann P, Macas J. Characterization of repeat arrays in ultra-long nanopore reads reveals frequent origin of satellite DNA from retrotransposon-derived tandem repeats. Plant J. 2020. https://doi.org/10.1111/tpj.14546.

Article  PubMed  Google Scholar 

Silva DMZ de A, Utsunomia R, Ruiz-Ruano FJ, Daniel SN, Porto-Foresti F, Hashimoto DT, Oliveira C, Camacho JPM, Foresti F. High-throughput analysis unveils a highly shared satellite DNA library among three species of fish genus Astyanax. Sci Rep. 2017 https://doi.org/10.1038/s41598-017-12939-7.

Kirov I, Gilyok M, Knyazev A, Fesenko I. Pilot satellitome analysis of the model plant, Physcomitrella patens, revealed a transcribed and high-copy IGS related tandem repeat. Comp Cytogenet. 2018. https://doi.org/10.3897/CompCytogen.v12i4.31015.

Article  PubMed  PubMed Central  Google Scholar 

Suárez-Santiago VN, Blanca G, Ruiz-Rejón M, Garrido-Ramos MA. Satellite-DNA evolutionary patterns under a complex evolutionary scenario: The case of Acrolophus subgroup (Centaurea L., Compositae) from the western Mediterranean. Gene. 2007 https://doi.org/10.1016/j.gene.2007.09.001

Chaves R, Ferreira D, Mendes-da-Silva A, Meles S, Adega F. FA-SAT Is an Old Satellite DNA Frozen in Several Bilateria Genomes. Genome Biol Evol. 2017.

留言 (0)

沒有登入
gif