Long-term kidney outcomes in pediatric continuous-flow ventricular assist device patients

O’Connor MJ, Rossano JW (2014) Ventricular assist devices in children. Curr Opin Cardiol 29:113–121

PubMed  Google Scholar 

Rossano JW, Cherikh WS, Chambers DC et al (2018) The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: twenty-first pediatric heart transplantation report-2018; Focus theme: Multiorgan Transplantation. J Heart Lung Transplant 37:1184–1195

PubMed  Google Scholar 

Wehman B, Stafford KA, Bittle GJ et al (2016) Modern outcomes of mechanical circulatory support as a bridge to pediatric heart transplantation. Ann Thorac Surg 101:2321–2327

PubMed  PubMed Central  Google Scholar 

Burki S, Adachi I (2017) Pediatric ventricular assist devices: current challenges and future prospects. Vasc Health Risk Manag 13:177–185

PubMed  PubMed Central  Google Scholar 

May LJ, Montez-Rath ME, Yeh J et al (2016) Impact of ventricular assist device placement on longitudinal renal function in children with end-stage heart failure. J Heart Lung Transplant 35:449–456

PubMed  Google Scholar 

Friedland-Little JM, Hong BJ, Gossett JG et al (2018) Changes in renal function after left ventricular assist device placement in pediatric patients: a Pedimacs analysis. J Heart Lung Transplant 37:1218–1225

PubMed  Google Scholar 

Fraser CD Jr, Jaquiss RD, Rosenthalet DN et al (2012) Prospective trial of a pediatric ventricular assist device. N Engl J Med 367:532–541

CAS  PubMed  Google Scholar 

Prodhan P, Bhutta AT, Gossett JM et al (2013) Comparative effects of ventricular assist device and extracorporeal membrane oxygenation on renal function in pediatric heart failure. Ann Thorac Surg 96:1428–1434

PubMed  Google Scholar 

Demirozu ZT, Etheridge WB, Radovancevic R et al (2011) Results of HeartMate II left ventricular assist device implantation on renal function in patients requiring post-implant renal replacement therapy. J Heart Lung Transplant 30:182–187

PubMed  Google Scholar 

Russell SD, Rogers JG, Milano CA et al (2009) Renal and hepatic function improve in advanced heart failure patients during continuous-flow support with the HeartMate II left ventricular assist device. Circulation 120:2352–2357

PubMed  Google Scholar 

Hasin T, Topilsky Y, Schirger JA et al (2012) Changes in renal function after implantation of continuous-flow left ventricular assist devices. J Am Coll Cardiol 59:26–36

PubMed  Google Scholar 

Sandner SE, Zimpfer D, Zrunek P et al (2008) Renal function after implantation of continuous versus pulsatile flow left ventricular assist devices. J Heart Lung Transplant 27:469–473

PubMed  Google Scholar 

Singh M, Shullo M, Kormos RL et al (2011) Impact of renal function before mechanical circulatory support on posttransplant renal outcomes. Ann Thorac Surg 91:1348–1354

PubMed  Google Scholar 

Sandner SE, Zimpfer D, Zrunek P et al (2009) Renal function and outcome after continuous flow left ventricular assist device implantation. Ann Thorac Surg 87:1072–1078

PubMed  Google Scholar 

Muslem R, Caliskan K, Akin S et al (2018) Acute kidney injury and 1-year mortality after left ventricular assist device implantation. J Heart Lung Transplant 37:116–123

PubMed  Google Scholar 

Patel AM, Adeseun GA, Ahmed I et al (2013) Renal failure in patients with left ventricular assist devices. Clin J Am Soc Nephrol 8:484–496

PubMed  Google Scholar 

Givens RC, Topkara VK (2018) Renal risk stratification in left ventricular assist device therapy. Expert Rev Med Devices 15:27–33

CAS  PubMed  Google Scholar 

Hollander SA, Cantor RS, Sutherland SM et al (2019) Renal injury and recovery in pediatric patients after ventricular assist device implantation and cardiac transplant. Pediatr Transplant 23:e13477

PubMed  Google Scholar 

Almond CS, Buchholz H, Massicotte P et al (2011) Berlin Heart EXCOR Pediatric ventricular assist device Investigational Device Exemption study: study design and rationale. Am Heart J 162:425–35.e6

PubMed  Google Scholar 

Morales DLS, Rossano JW, VanderPluym C et al (2019) Third annual pediatric interagency registry for mechanical circulatory support (Pedimacs) report: preimplant characteristics and outcomes. Ann Thorac Surg 107:993–1004

PubMed  Google Scholar 

Morales DLS, Adachi I, Peng DM et al (2020) Fourth annual pediatric interagency registry for mechanical circulatory support (Pedimacs) report. Ann Thorac Surg 110:1819–1831

PubMed  Google Scholar 

Conway J, Miera O, Adachi I et al (2018) Worldwide experience of a durable centrifugal flow pump in pediatric patients. Semin Thorac Cardiovasc Surg 30:327–335

PubMed  Google Scholar 

Sutcliffe DL, Pruitt E, Cantor RS et al (2018) Post-transplant outcomes in pediatric ventricular assist device patients: a PediMACS-Pediatric Heart Transplant Study linkage analysis. J Heart Lung Transplant 37:715–722

PubMed  Google Scholar 

Puri K, Andes MM, Tume SC et al (2019) Characteristics and outcomes of pediatric patients supported with ventricular assist device-a multi-institutional analysis. Pediatr Crit Care Med 20:744–752

PubMed  Google Scholar 

Rosenthal DN, Almond CS, Jaquiss RD et al (2016) Adverse events in children implanted with ventricular assist devices in the United States: data from the Pediatric Interagency Registry for Mechanical Circulatory Support (PediMACS). J Heart Lung Transplant 35:569–577

PubMed  PubMed Central  Google Scholar 

Schwartz GJ, Muñoz A, Schneider MF et al (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637

PubMed  PubMed Central  Google Scholar 

Mian AN, Schwartz GJ (2017) Measurement and estimation of glomerular filtration rate in children. Adv Chronic Kidney Dis 24:348–356

PubMed  PubMed Central  Google Scholar 

Cuzzolin L, Fanos V, Pinna B et al (2006) Postnatal renal function in preterm newborns: a role of diseases, drugs and therapeutic interventions. Pediatr Nephrol 21:931–938

PubMed  Google Scholar 

Pasquali M, Bellasi A, Cianciolo G et al (2018) [Update 2017 of the KDIGO guidelines on chronic kidney disease-mineral and bone disorder (ckd-mbd). What are the real changes?]. G Ital Nefrol 35:2018-vol3

Devarajan P (2013) Pediatric acute kidney injury: different from acute renal failure but how and why. Curr Pediatr Rep 1:34–40

PubMed  Google Scholar 

Khwaja A (2012) KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract 120:c179–c184

PubMed  Google Scholar 

Idrovo A, Afonso N, Price J et al (2021) Kidney replacement therapy in pediatric patients on mechanical circulatory support: challenges for the pediatric nephrologist. Pediatr Nephrol 36:1109–1117

PubMed  Google Scholar 

Heinzel FR, Hegemann N, Hohendanner F et al (2020) Left ventricular dysfunction in heart failure with preserved ejection fraction-molecular mechanisms and impact on right ventricular function. Cardiovasc Diagn Ther 10:1541–1560

PubMed  PubMed Central  Google Scholar 

Adachi I, Khan MS, Guzmán-Pruneda FA et al (2015) Evolution and impact of ventricular assist device program on children awaiting heart transplantation. Ann Thorac Surg 99:635–640

PubMed  Google Scholar 

Sensirivatana R, Kingwatanakul P, Futrakul P (1999) Renal perfusion and disease progression. J Med Assoc Thai 82:496–505

CAS  PubMed  Google Scholar 

Leitch CA (2000) Growth, nutrition and energy expenditure in pediatric heart failure. Prog Pediatr Cardiol 11:195–202

CAS  PubMed  Google Scholar 

Tsintoni A, Dimitriou G, Karatza AA (2020) Nutrition of neonates with congenital heart disease: existing evidence, conflicts and concerns. J Matern Fetal Neonatal Med 33:2487–2492

PubMed  Google Scholar 

Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A (1976) A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 58:259–263

CAS  PubMed  Google Scholar 

Schwartz GJ, Gauthier B (1985) A simple estimate of glomerular filtration rate in adolescent boys. J Pediatr 106:522–526

CAS  PubMed  Google Scholar 

Finney H, Newman DJ, Gruber W et al (1997) Initial evaluation of cystatin C measurement by particle-enhanced immunonephelometry on the Behring nephelometer systems (BNA, BN II). Clin Chem 43:1016–1022

CAS  PubMed  Google Scholar 

Kyhse-Andersen J, Schmidt C, Nordin G et al (1994) Serum cystatin C, determined by a rapid, automated particle-enhanced turbidimetric method, is a better marker than serum creatinine for glomerular filtration rate. Clin Chem 40:1921–1926

CAS  PubMed  Google Scholar 

Newman DJ (2002) Cystatin C. Ann Clin Biochem 39(Pt 2):89–104

CAS  PubMed  Google Scholar 

Gubb S, Holmes J, Smith G et al (2020) Acute kidney injury in children based on electronic alerts. J Pediatr 220:14-20.e4

PubMed  Google Scholar 

Goldstein SL, Devarajan P (2010) Pediatrics: acute kidney injury leads to pediatric patient mortality. Nat Rev Nephrol 6:393–394

PubMed  Google Scholar 

Schneider J, Khemani R, Grushkin C, Bart R (2010) Serum creatinine as stratified in the RIFLE score for acute kidney injury is associated with mortality and length of stay for children in the pediatric intensive care unit. Crit Care Med 38:933–939

CAS  PubMed  Google Scholar 

Chen S, Dykes JC, McElhinney DB et al (2017) Haemodynamic profiles of children with end-stage heart failure. Eur Heart J 38:2900–2909

PubMed  Google Scholar 

留言 (0)

沒有登入
gif