Hyperglycemia and microRNAs in prostate cancer

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

Article  PubMed  Google Scholar 

Auvinen A, Moss SM, Tammela TLJ, Taari K, Roobol MJ, Schrader FH, et al. Absolute effect of prostate cancer screening: balance of benefits and harms by center within the European randomized study of prostate cancer screening. Clin Cancer Res. 2015;22:243–9.

Article  PubMed  PubMed Central  Google Scholar 

Ahdoot M, Wilbur AR, Reese SE, Lebastchi AH, Mehralivand S, Gomella PT, et al. MRI-targeted, systematic, and combined biopsy for prostate cancer diagnosis. N. Engl J Med. 2020;382:917–28.

Article  PubMed  PubMed Central  Google Scholar 

Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nair VS, Pritchard CC, Tewari M, Ioannidis JPA. Design and analysis for studying microRNAs in human disease: a primer on -omic technologies. Am J Epidemiol. 2014;180:140–52.

Article  PubMed  PubMed Central  Google Scholar 

Volinia S, Calin GA, Liu C-G, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 2006;103:2257–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ardekani AM, Naeini MM. The role of MicroRNAs in human diseases. Avicenna J Med Biotechnol. 2010;2:161–79.

CAS  PubMed  PubMed Central  Google Scholar 

Fabris L, Ceder Y, Chinnaiyan AM, Jenster GW, Sorensen KD, Tomlins S, et al. The potential of MicroRNAs as prostate cancer biomarkers. Eur Urol. 2016;70:312–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aveta A, Cilio S, Contieri R, Spena G, Napolitano L, Manfredi C, et al. Urinary MicroRNAs as biomarkers of urological cancers: a systematic review. Int J Mol Sci. 2023;24:10846.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marrone MT, Selvin E, Barber JR, Platz EA, Joshu CE. Hyperglycemia, classified with multiple biomarkers simultaneously in men without diabetes, and risk of fatal prostate cancer. Cancer Prev Res. 2019;12:103.

Article  CAS  Google Scholar 

Murtola TJ, Vihervuori VJY, Lahtela J, Talala K, Taari K, Tammela TLJ, et al. Fasting blood glucose, glycaemic control and prostate cancer risk in the Finnish Randomized Study of Screening for Prostate Cancer. Br J cancer. 2018;118:1248–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murtola TJ, Salli SM, Talala K, Taari K, Tammela TLJ, Auvinen A. Blood glucose, glucose balance, and disease-specific survival after prostate cancer diagnosis in the Finnish Randomized Study of Screening for Prostate Cancer. Prostate Cancer Prostatic Dis. 2019;22:453–60.

Article  CAS  PubMed  Google Scholar 

Arthur R, Muller H, Garmo H, Holmberg L, Stattin P, Malmstrom H, et al. Association between baseline serum glucose, triglycerides and total cholesterol, and prostate cancer risk categories. Cancer Med. 2016;5:1307–18.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paiva RM, Zauli DAG, Neto BS, Brum IS. Urinary microRNAs expression in prostate cancer diagnosis: a systematic review. Clin Transl Oncol. 2020;22:2061–73.

Article  CAS  PubMed  Google Scholar 

Al-Mahayni S, Ali M, Khan M, Jamsheer F, Moin ASM, Butler AE. Glycemia-induced miRNA changes: a review. Int J Mol Sci. 2023;24:7488.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu Z, Dong J, Wang L-E, Ma H, Liu J, Zhao Y, et al. Serum microRNA profiling and breast cancer risk: the use of miR-484/191 as endogenous controls. Carcinogenesis. 2012;33:828–34.

Article  CAS  PubMed  Google Scholar 

Echouffo-Tcheugui JB, Selvin E. Prediabetes and what it means: the epidemiological evidence. Annu Rev Public Health. 2021;42:59–77.

Article  PubMed  PubMed Central  Google Scholar 

Oger F, Gheeraert C, Mogilenko D, Benomar Y, Molendi-Coste O, Bouchaert E, et al. Cell-specific dysregulation of microrna expression in obese white adipose tissue. J Clin Endocrinol Metab. 2014;99:2821–33.

Article  CAS  PubMed  Google Scholar 

Weale CJ, Matshazi DM, Davids SFG, Raghubeer S, Erasmus RT, Kengne AP, et al. Circulating miR-30a-5p and miR-182-5p in prediabetes and screen-detected diabetes mellitus. Diabetes Metab Syndr Obes. 2020;13:5037–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pek SLT, Sum CF, Lin MX, Cheng AKS, Wong MTK, Lim SC, et al. Circulating and visceral adipose miR-100 is down-regulated in patients with obesity and Type 2 diabetes. Mol Cell Endocrinol. 2016;427:112–23.

Article  CAS  PubMed  Google Scholar 

Li X, Li J, Cai Y, Peng S, Wang J, Xiao Z, et al. Hyperglycaemia-induced miR-301a promotes cell proliferation by repressing p21 and Smad4 in prostate cancer. Cancer Lett. 2018;418:211–20.

Article  CAS  PubMed  Google Scholar 

Gajeton J, Krukovets I, Muppala S, Verbovetskiy D, Zhang J, Stenina-Adognravi O. Hyperglycemia-induced miR-467 drives tumor inflammation and growth in breast cancer. Cancers. 2021;13:1346.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hudson RS, Yi M, Esposito D, Watkins SK, Hurwitz AA, Yfantis HG, et al. MicroRNA-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer. Nucleic Acids Res. 2012;40:3689–703.

Article  CAS  PubMed  Google Scholar 

Abramovic I, Vrhovec B, Skara L, Vrtaric A, Nikolac Gabaj N, Kulis T, et al. MiR-182-5p and miR-375-3p have higher performance than PSA in discriminating prostate cancer from Benign prostate hyperplasia. Cancers. 2021;13:2068.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Szczyrba J, Loprich E, Wach S, Jung V, Unteregger G, Barth S, et al. The MicroRNA profile of prostate carcinoma obtained by deep sequencing. Mol Cancer Res. 2010;8:529–38.

Article  CAS  PubMed  Google Scholar 

Konoshenko MY, Lekchnov EA, Bryzgunova OE, Zaporozhchenko IA, Yarmoschuk SV, Pashkovskaya OA, et al. The panel of 12 cell-free microRNAs as potential biomarkers in prostate neoplasms. Diagnostics. 2020;10:38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang NL, Li Q, Cheng NH, Guan G, Wang ZL, Qin Y, et al. miR-205 is frequently downregulated in prostate cancer and acts as a tumor suppressor by inhibiting tumor growth. Asian J Androl. 2013;15:735–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nayak B, Khan N, Garg H, Rustagi Y, Singh P, Seth A, et al. Role of miRNA-182 and miRNA-187 as potential biomarkers in prostate cancer and its correlation with the staging of prostate cancer. Int Braz J Urol. 2020;46:614–23.

Article  PubMed  PubMed Central  Google Scholar 

Li Y, Li J, Yu H, Liu Y, Song H, Tian X, et al. HOXA5-miR-574-5p axis promotes adipogenesis and alleviates insulin resistance. Mol Ther Nucleic Acids. 2022;27:200–10.

Article  CAS  PubMed  Google Scholar 

Raza ST, Rizvi S, Afreen S, Srivastava S, Siddiqui Z, Fatima N, et al. Association of the circulating micro-RNAs with susceptible and newly diagnosed type 2 diabetes mellitus cases. Adv Biomark Sci Technol. 2022;5:57–67.

Article  Google Scholar 

Lieb V, Weigelt K, Scheinost L, Fischer K, Greither T, Marcou M, et al. Serum levels of miR-320 family members are associated with clinical parameters and diagnosis in prostate cancer patients. Oncotarget. 2018;9:10402–10416.

Singh PK, Preus L, Hu Q, Yan L, Long MD, Morrison CD, et al. Serum microRNA expression patterns that predict early treatment failure in prostate cancer patients. Oncotarget. 2014;5:824–40.

Article  PubMed  PubMed Central  Google Scholar 

Ramteke P, Deb A, Shepal V, Bhat MK. Hyperglycemia associated metabolic and molecular alterations in cancer risk, progression, treatment, and mortality. Cancers. 2019;11:1402.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yaribeygi H, Atkin SL, Sahebkar A. A review of the molecular mechanisms of hyperglycemia-induced free radical generation leading to oxidative stress. J Cell Physiol. 2018;234:1300–12.

Article  PubMed  Google Scholar 

He S, Shi J, Mao J, Luo X, Liu W, Liu R, et al. The expression of miR-375 in prostate cancer: a study based on GEO, TCGA data and bioinformatics analysis. Pathol Res Pract. 2019;215:152375.

Article  CAS  PubMed  Google Scholar 

Pickl JMA, Tichy D, Kuryshev VY, Tolstov Y, Falkenstein M, Schuler J, et al. Ago-RIP-Seq identifies Polycomb repressive complex I member CBX7 as a major target of miR-375 in prostate cancer progression. Oncotarget. 2016;7:59589–603.

留言 (0)

沒有登入
gif