Solid-state fermentation of brown seaweeds for the production of alginate lyase using marine bacterium Enterobacter tabaci RAU2C

Aarstad OA, Tondervik A, Sletta H, Skjak-Braek G (2012) Alginate sequencing: an analysis of block distribution in alginates using specific alginate degrading enzymes. Biomacromol 13:106–116. https://doi.org/10.1021/bm201302622

Article  CAS  Google Scholar 

Aramwit P (2016) Introduction to biomaterials for wound healing. Wound Healing Biomaterials 3–38. https://doi.org/10.1016/B978-1-78242-456-7.00001-5

Article  Google Scholar 

Aslamyah S, Karim, MY, Badraeni (2017) Fermentation of seaweed flour with various fermenters to improve the quality of fish feed ingredients. JAI 16(1):8 https://doi.org/10.19027/jai.16.1.8-14

Boyd J, Turvey JR (1978) Structural studies of alginic acid, using a bacterial poly-alpha-l-guluronate lyase. Carbohydr Res 66(187–94):23. https://doi.org/10.1016/S0008-6215(00)83251-6

Article  Google Scholar 

Chapla D, Patel H, Singh A, Madamwar D, Shah A (2011) Production, purification and properties of a cellulase-free thermostable endoxylanase from newly isolated Paenibacillus sp. ASCD2. Ann Microbiol 62(2):825–834. https://doi.org/10.1007/s13213-011-0323-5

Article  CAS  Google Scholar 

Chen P, Zhu Y, Men Y, Zeng Y, Sun Y (2018) Purification and characterization of a novel alginate lyase from the marine bacterium Bacillus sp. Alg07. Mar Drugs 16:86. https://doi.org/10.3390/md16030086

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chu YJ, Kim HS, Kim MS, Lee EY, Kim HS (2020) Functional characterization of a novel oligoalginate lyase of Stenotrophomonas maltophilia KJ-2 using site-specific mutation reveals bifunctional mode of action, possessing both endolytic and exolytic degradation activity toward alginate in seaweed biomass. Front Mar Sci 7:420. https://doi.org/10.3389/fmars.2020.00420

Article  ADS  Google Scholar 

Daboor SM, Rohde JR, Cheng Z (2021) Disruption of the extracellular polymeric network of Pseudomonas aeruginosa biofilms by alginate lyase enhances pathogen eradication by antibiotics. J Cyst Fibros 20:264–270. https://doi.org/10.1016/j.jcf.2020.04.006

Article  CAS  PubMed  Google Scholar 

Darabzadeh N, Hamidi-Esfahani Z, Hejazi P (2018) Optimization of cellulase production under solid-state fermentation by a new mutant strain of Trichoderma reesei. Food Sci Nutr 297(2):572–578. https://doi.org/10.1002/fsn3.852

Article  CAS  Google Scholar 

Deepika C, Ravishankar GA, Rao AR (2022) Potential products from macroalgae: an overview. In: Ranga Rao, A., Ravishankar, G.A. (eds) Sustainable global resources of seaweeds, Springer, Cham. 1:17–44 https://doi.org/10.1007/978-3-030-91955-92

Dou W, Wei D, Li H, Li H, Rahman MM, Shi J, Xu Z, Ma Y (2013) Purification and characterisation of a bifunctional alginate lyase from novel Isoptericola halotolerans CGMCC 5336. Carbohydr Polym 98:1476–1482. https://doi.org/10.1016/j.carbpol.2013.07.050

Article  CAS  PubMed  Google Scholar 

Dubois M, Gilles K, Hamilton J et al (1951) A colorimetric method for the determination of sugars. Nature 168(4265):167. https://doi.org/10.1038/168167a0

Article  ADS  CAS  PubMed  Google Scholar 

Elyakova LA, Favorov VV (1974) Isolation and certain properties of alginate lyase VI from the mollusk Littorina sp. Biochim Biophys Acta (BBA)-Enzymol 358:341–354. https://doi.org/10.1016/0005-2744(74)90464-1

Article  CAS  Google Scholar 

Falkeborg M, Cheong LZ, Gianfico C, Sztukiel KM, Kristensen K, Glasius M, Xu X, Guo Z (2014) Alginate oligosaccharides: enzymatic preparation and antioxidant property evaluation. Food Chem 164:185–194. https://doi.org/10.1016/j.foodchem.2014.05.053

Article  CAS  PubMed  Google Scholar 

Gacesa P (1988) Alginates. Carbohyd Polym 8:161–182. https://doi.org/10.1016/0144-8617(88)90001-X

Article  CAS  Google Scholar 

Gazulla MF, Rodrigo M, Orduña M, Gómez CM (2012) Determination of carbon, hydrogen, nitrogen and sulfur in geological materials using elemental analysers. Geostand Geoanal Res 36(2):201–217. https://doi.org/10.1111/j.1751-908x.2011.00140.x. Portico

Article  CAS  Google Scholar 

Hien NQ, Nagasawa N, Tham LX, Yoshii F, Dang VH, Mitomo H, Makuuchi K, Kume T (2000) Growth promotion of plants with depolymerized alginates by irradiation. Radiat Phys Chem 59:97–101. https://doi.org/10.1016/S0969-806X(99)00522-8

Article  ADS  CAS  Google Scholar 

Hu X, Jiang X, Hwang H, Liu S, Guan H (2004) Promotive effects of alginate-derived oligosaccharide on maize seed germination. J Appl Phycol 16:73–76. https://doi.org/10.1023/B:JAPH.0000019139.35046.0c

Article  CAS  Google Scholar 

Inoue A, Mashino C, Kodama T, Ojima T (2011) Protoplast preparation from Laminaria japonica with recombinant alginate lyase and cellulase. Marine Biotechnol 13:256–263. https://doi.org/10.1007/s10126-010-9290-2

Article  CAS  Google Scholar 

Inoue A, Ojima T (2019) Functional identification of alginate lyase from the brown alga Saccharina japonica. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-41351-6

Article  CAS  Google Scholar 

Jamal P, Olorunnisola KS, Jaswir I, Tijani IDR, Ansari AH (2017) Bioprocessing of seaweed into protein-enriched feedstock: process optimization and validation in the reactor. Int Food Res J 24:382–386

Google Scholar 

Khan N, Mishra A, Chauhan PS, Nautiyal CS (2011) Induction of Paenibacillus lentimorbus biofilm by sodium alginate and CaCl2 alleviates drought stress in chickpea. Ann Appl Biol 159:372–386. https://doi.org/10.1111/j.1744-7348.2011.00502.x

Article  CAS  Google Scholar 

Khan S, Tondervik A, Sletta H, Klinkenberg G, Emanuel C, Onsoyen E, Myrvold R, Howe RA, Walsh TR, Hill KE, Thomas DW (2012) Overcoming drug resistance with alginate oligosaccharides able to potentiate the action of selected antibiotics. Antimicrob Agents Chemother 56:5134–5141. https://doi.org/10.1128/AAC.00525-12

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li L, Jiang X, Guan H, Wang P (2011) Preparation, purification and characterization of alginate oligosaccharides degraded by alginate lyase from Pseudomonas sp. HZJ 216. Carbohydr Res 346:794–800. https://doi.org/10.1016/j.carres.2011.01.023

Article  CAS  PubMed  Google Scholar 

Lu W, Li D, Wu Y (2003) Influence of water activity and temperature on xylanase biosynthesis in pilot-scale solid-state fermentation by Aspergillus sulphureus. Enzym Microbiol Technol 32:305–311

Article  CAS  Google Scholar 

Luan LQ, Hien NQ, Nagasawa N, Kume T, Yoshii F, Nakanishi TM (2003) Biological effect of radiation-degraded alginate on flower plants in tissue culture. Biotechnol Appl Biochem 38:283–288. https://doi.org/10.1042/BA20030058

Article  CAS  Google Scholar 

Ma LJ, Zhang Y, Bu N, Wang SH (2010) Alleviation effect of alginate-derived oligosaccharides on Vicia faba root tip cells damaged by cadmium. Bull Environ Contam Toxicol 84:161–164. https://doi.org/10.1007/s00128-009-9914-2

Article  CAS  PubMed  Google Scholar 

Ma Y, Li J, Zhang X-Y, Ni H-D, Wang F-B, Wang H-Y, Wang Z-P (2020) Characterization of a new intracellular alginate lyase with metal ions-tolerant and pH-stable properties. Mar Drugs 18(8):416. https://doi.org/10.3390/md18080416

Article  CAS  PubMed  PubMed Central  Google Scholar 

Manan MA, Webb C (2017) Design aspects of solid state fermentation as applied to microbial bioprocessing. J Appl Biotechnol Bioeng 4:511–532

Google Scholar 

Maurya DP, Singh D, Pratap D, Maurya JP (2012) Optimization of solid state fermentation conditions for the production of cellulase by Trichoderma reesei. J Environ Biol 33(1):5–8

CAS  PubMed  Google Scholar 

Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Journal of Analy Chem 31:426–428. https://doi.org/10.1021/ac60147a030

Article  CAS  Google Scholar 

Okafor UA, Emezue TN, Okochi VI, Onyegeme-Okerenta BN, Nwodo-Chinedu S (2007) Xylanase production by Penicillium chrysogenum (PCL501) fermented on cellulosic wastes. Afr J Biochem Res 48–53

Ostgaard K (1993) Determination of alginate composition by a simple enzymatic assay. Hydrobiologia 261:513–520

Article  Google Scholar 

Pandey A (1992) Recent process development in solid-state fermentation. Process Biochem 27:109–117. https://doi.org/10.1016/0032-9592(92)80017-W

Article  CAS  Google Scholar 

Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84. https://doi.org/10.1016/S1369-703X(02)00121-3

Article  CAS  Google Scholar 

Park HJ, Ahn JM, Park RM, Lee SH, Sekhon SS, Kim SY, Wee JH, Kim YH, Min J (2016) Effects of alginate oligosaccharide mixture on the bioavailability of lysozyme as an antimicrobial agent. J Nanosci Nanotechnol 16:1445–1449

Article  CAS  PubMed  Google Scholar 

Ramya P, Selvaraj K, Suthendran K, Sundar K, Vanavil B (2023) Optimization of alginate lyase production using Enterobacter tabaci RAU2C isolated from marine environment by RSM and ANFIS modelling. Aquacult Int 31(6):3207–3237. https://doi.org/10.1007/s10499-023-01302-5

Article  CAS  Google Scholar 

Saigusa M, Nishizawa M, Shimizu Y, Saeki H (2015) In vitro and in vivo anti-inflammatory activity of digested peptides derived from salmon myofibrillar protein conjugated with a small quantity of alginate oligosaccharide. Biosci Biotechnol Biochem 79:1518–1527. https://doi.org/10.1080/09168451.2015.1031075

Article  CAS  PubMed  Google Scholar 

Sarkar G, Jatar N, Goswami P, Cyriac R, Suthindhiran K, Jayasri MA (2018) Combination of different marine algal extracts as bio-stimulant and bio-fungicide. J Plant Nutr 41:1163–1171. https://doi.org/10.1080/01904167.2018.1434201

Article  CAS  Google Scholar 

Schaumann K, Weide G (1990) Enzymatic degradation of alginate by marine fungi. Thirteenth International Seaweed Symposium, Hydrobiologia 204(205):589–596

留言 (0)

沒有登入
gif