Proteomic analysis of decellularized mice liver and kidney extracellular matrices

Naba A, Clauser KR, Hoersch S, Liu H, Carr SA, Hynes RO. The Matrisome: In Silico Definition and In Vivo Characterization by Proteomics of Normal and Tumor Extracellular Matrices. Mole Cell Proteomics. 2012;11(4):M111.014647.

Hynes RO, Naba A. Overview of the matrisome–an inventory of extracellular matrix constituents and functions. Cold Spring Harb Perspect Biol. 2012;4(1):a004903–a004903.

Article  PubMed  PubMed Central  Google Scholar 

Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, et al. A guide to the composition and functions of the extracellular matrix. FEBS J. 2021;288(24):6850–912.

Article  CAS  PubMed  Google Scholar 

Bingham GC, Lee F, Naba A, Barker TH. Spatial-omics: Novel approaches to probe cell heterogeneity and extracellular matrix biology. Matrix Biol. 2020;91–92:152–66.

Article  PubMed  PubMed Central  Google Scholar 

Urciuolo F, Imparato G, Netti PA. In vitro strategies for mimicking dynamic cell-ECM reciprocity in 3D culture models. Front Bioeng Biotechnol. 2023;11:1197075.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C. Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioact Mater [Internet]. 2022;10:15 [cited 2022 May 3]. Available from: /pmc/articles/PMC8637010/

Kozlowski MT, Crook CJ, Ku HT. Towards organoid culture without Matrigel. Available from: https://doi.org/10.1038/s42003-021-02910-8

Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32(12):3233–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Badylak SF, Taylor D, Uygun K. Whole-Organ Tissue Engineering: Decellularization and Recellularization of Three-Dimensional Matrix Scaffolds. Annu Rev Biomed Eng. 2011.

Mendibil U, Ruiz-Hernandez R, Retegi-Carrion S, Garcia-Urquia N, Olalde-Graells B, Abarrategi A. Tissue-specific decellularization methods: rationale and strategies to achieve regenerative compounds. Int J Mol Sci. 2020;21(15):5447.

Article  PubMed  PubMed Central  Google Scholar 

Liu C, Pei M, Li Q, Zhang Y. Decellularized extracellular matrix mediates tissue construction and regeneration. Front Med. 2022;16(1):56–82.

Article  CAS  PubMed  Google Scholar 

Wang Z, Sun F, Lu Y, Zhang B, Zhang G, Shi H. Rapid preparation method for preparing tracheal decellularized scaffolds: vacuum assistance and optimization of DNase I. ACS Omega. 2021;6(16):10637–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song YH, Maynes MA, Hlavac N, Visosevic D, Daramola KO, Porvasnik SL, et al. Development of novel apoptosis-assisted lung tissue decellularization methods. Biomater Sci. 2021;9(9):3485–98.

Article  CAS  PubMed  Google Scholar 

Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO. The extracellular matrix: Tools and insights for the “omics” era. Matrix Biol. 2016;49:10–24.

Article  CAS  PubMed  Google Scholar 

Ten NA. Years of Extracellular Matrix Proteomics: Accomplishments, Challenges, and Future Perspectives. Mol Cell Proteomics. 2023;22(4): 100528.

Article  Google Scholar 

Hansen KC, Kiemele L, Maller O, O’Brien J, Shankar A, Fornetti J, et al. An In-solution ultrasonication-assisted digestion method for improved extracellular matrix proteome coverage. Mol Cell Proteomics. 2009;8(7):1648–57.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Manes NP, Nita-Lazar A. Application of targeted mass spectrometry in bottom-up proteomics for systems biology research. J Proteomics. 2018;189:75–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miller RM, Smith LM. Overview and considerations in bottom-up proteomics. Analyst. 2023;148(3):475–86.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Washburn MP, Wolters D, Yates JR. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol. 2001;19(3):242–7.

Article  CAS  PubMed  Google Scholar 

Daneshgar A, Klein O, Nebrich G, Weinhart M, Tang P, Arnold A, et al. The human liver matrisome – Proteomic analysis of native and fibrotic human liver extracellular matrices for organ engineering approaches. Biomaterials. 2020;257: 120247.

Article  CAS  PubMed  Google Scholar 

Hillebrandt K, Polenz D, Butter A, Tang P, Reutzel-Selke A, Andreou A, et al. Procedure for Decellularization of Rat Livers in an Oscillating-pressure Perfusion Device. J Visual Exp. 2015;(102).

Struecker B, Butter A, Hillebrandt K, Polenz D, Reutzel-Selke A, Tang P, et al. Improved rat liver decellularization by arterial perfusion under oscillating pressure conditions. J Tissue Eng Regen Med. 2017;11(2):531–41.

Article  CAS  PubMed  Google Scholar 

Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6(5):359–62.

Article  PubMed  Google Scholar 

Shao X, Taha IN, Clauser KR, Gao Y (Tom), Naba A. MatrisomeDB: the ECM-protein knowledge database. Nucleic Acids Res. 2020;48(D1):D1136–44.

Shao X, Gomez CD, Kapoor N, Considine JM, Grams C, Gao Y (Tom), et al. MatrisomeDB 2.0: 2023 updates to the ECM-protein knowledge database. Nucleic Acids Res. 2023;51(D1):D1519–30.

Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47(D1):D442–50.

Article  CAS  PubMed  Google Scholar 

Khoshnoodi J, Pedchenko V, Hudson BG. Mammalian collagen IV. Microsc Res Tech. 2008;71(5):357–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miner JH. Laminins and their roles in mammals. Microsc Res Tech. 2008;71(5):349–56.

Article  CAS  PubMed  Google Scholar 

Naylor RW, Morais MRPT, Lennon R. Complexities of the glomerular basement membrane. Nat Rev Nephrol. 2021;17(2):112–27.

Article  CAS  PubMed  Google Scholar 

Yousif LF, Di Russo J, Sorokin L. Laminin isoforms in endothelial and perivascular basement membranes. Cell Adh Migr. 2013;7(1):101–10.

Article  PubMed  PubMed Central  Google Scholar 

Gara SK, Grumati P, Squarzoni S, Sabatelli P, Urciuolo A, Bonaldo P, et al. Differential and restricted expression of novel collagen VI chains in mouse. Matrix Biol. 2011;30(4):248–57.

Article  CAS  PubMed  Google Scholar 

Fitzgerald J, Holden P, Hansen U. The expanded collagen VI family: new chains and new questions. Connect Tissue Res. 2013;54(6):345–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fitzgerald J, Rich C, Zhou FH, Hansen U. Three Novel Collagen VI Chains, α4(VI), α5(VI), and α6(VI). J Biol Chem. 2008;283(29):20170–80.

Article  CAS  PubMed  Google Scholar 

Saharinen J, Taipale J, Monni O, Keski-Oja J. Identification and characterization of a new latent transforming growth factor-β-binding Protein, LTBP-4. J Biol Chem. 1998;273(29):18459–69.

Article  CAS  PubMed  Google Scholar 

Sterner-Kock A, Thorey IS, Koli K, Wempe F, Otte J, Bangsow T, et al. Disruption of the gene encoding the latent transforming growth factor-β binding protein 4 (LTBP-4) causes abnormal lung development, cardiomyopathy, and colorectal cancer. Genes Dev. 2002;16(17):2264–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramirez F, Sakai LY. Biogenesis and function of fibrillin assemblies. Cell Tissue Res. 2010;339(1):71–82.

Article  CAS  PubMed  Google Scholar 

Appunni S, Rubens M, Ramamoorthy V, Anand V, Khandelwal M, Sharma A. Biglycan: an emerging small leucine-rich proteoglycan (SLRP) marker and its clinicopathological significance. Mol Cell Biochem. 2021;476(11):3935–50.

Article  CAS  PubMed  Google Scholar 

Saha A, Cheriyamundath S, Kumar A, Gavert N, Brabletz T, Ben-Ze’ev A. A Necessary Role for Increased Biglycan Expression during L1-Mediated Colon Cancer Progression. Int J Mol Sci. 2021;23(1):445.

Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, et al. Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 2012;1824(1):68–88.

Kos J, Jevnikar Z, Obermajer N. The role of cathepsin X in cell signaling. Cell Adh Migr. 2009;3(2):164–6.

Article  PubMed  PubMed Central  Google Scholar 

Akkari L, Gocheva V, Kester JC, Hunter KE, Quick ML, Sevenich L, et al. Distinct functions of macrophage-derived and cancer cell-derived cathepsin Z combine to promote tumor malignancy via interactions with the extracellular matrix. Genes Dev. 2014;28(19):2134–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kyriakopoulou K, Piperigkou Z, Tzaferi K, Karamanos NK. Trends in extracellular matrix biology. Mol Biol Rep. 2023;50(1):853–63.

Article  CAS  PubMed  Google Scholar 

Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C. Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioact Mater. 2022;10:15–31.

CAS 

留言 (0)

沒有登入
gif