Mitochondrial Antioxidant SkQ1 Affects the GABAergic but Not the Glutamatergic System in the Hippocampus of Wistar and Senescence Accelerated OXYS Rats

Skulachev, M.V. and Skulachev, V.P., Programmed aging of mammals: Proof of concept and Prospects of biochemical approaches for anti-aging therapy, Biochemistry (Moscow), 2017, vol. 82, no. 12, pp. 1403–1422. https://doi.org/10.1134/S000629791712001X

Article  CAS  PubMed  Google Scholar 

Kolosova, N.G., Kozhevnikova, O.S., Muraleva, N.A., Rudnitskaya, E.A., Rumyantseva, Y.V., Stefanova, N.A., Telegina, D.V., Tyumentsev, M.A., and Fursova, A.Z., SkQ1 as a tool for controlling accelerated senescence program: Experiments with OXYS rats, Biochemistry (Moscow), 2022, vol. 87, no. 12, pp. 1552–1562. https://doi.org/10.1134/S0006297922120124

Article  CAS  PubMed  Google Scholar 

Stefanova, N.A., Kozhevnikova, O.S., Vitovtov, A.O., Maksimova, K.Y., Logvinov, S.V., Rudnitskaya, E.A., Korbolina, E.E., Muraleva, N.A., and Kolosova, N.G., Senescence-accelerated OXYS rats: A model of age-related cognitive decline with relevance to abnormalities in Alzheimer disease, Cell Cycle, 2014, vol. 13, no. 6, pp. 898–909. https://doi.org/10.4161/cc.28255

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stefanova, N.A., Muraleva, N.A., Maksimova, K.Y., Rudnitskaya, E.A., Kiseleva, E., Telegina, D.V., and Kolosova, N.G., An antioxidant specifically targeting mitochondria delays progression of Alzheimer’s disease-like pathology, Aging (Albany, New York), 2016, vol. 8, no. 11, pp. 2713–2733. https://doi.org/10.18632/aging.101054

Article  CAS  Google Scholar 

Andersen, J.V., Schousboe, A., and Verkhratsky, A., Astrocyte energy and neurotransmitter metabolism in Alzheimer’s disease: Integration of the glutamate/GABA-glutamine cycle, Prog. Neurobiol., 2022, vol. 217, p. 102331. https://doi.org/10.1016/j.pneurobio.2022.102331

Article  CAS  PubMed  Google Scholar 

Telegina, D.V., Antonenko, A.K., Fursova, A.Z., and Kolosova, N.G., The glutamate/GABA system in the retina of male rats: Effects of aging, neurodegeneration, and supplementation with melatonin and antioxidant SkQ1, Biogerontol., 2022, vol. 23, no. 5, pp. 571–585. https://doi.org/10.1007/s10522-022-09983-w

Article  CAS  Google Scholar 

Telegina, D.V., Antonenko, A.K., and Kolosova, N.G., Differences in changes in the glutamate/GABA system activity in the rat retina during aging and the development of retinopathy at nighttime and daytime, Neurochem. J., 2023, vol. 17, pp. 380–386. https://doi.org/10.1134/S1819712423030170

Article  CAS  Google Scholar 

Burnyasheva, A.O., Stefanova, N.A., Kolosova, N.G., and Telegina, D.V., Changes in the glutamate/GABA system in the hippocampus of rats with age and during of the Alzheimer’s disease signs development, Biochemistry (Moscow), 2023, vol. 88, no. 12, pp. 2358–2374.https://doi.org/10.1134/S0006297923120027

Article  Google Scholar 

Haugeto, O., Ullensvang, K., Levy, L.M., Chaudhry, F.A., Honore, T., Nielsen, M., Lehre, K.P., and Danbolt, N.C., Brain glutamate transporter proteins form homomultimers, J. Biol. Chem., 1996, vol. 271, no. 44, pp. 27 715–27 722. https://doi.org/10.1074/jbc.271.44.27715

Article  Google Scholar 

Xu, Y., Zhao, M., Han, Y., and Zhang, H., GABAergic inhibitory interneuron deficits in Alzheimer’s disease: Implications for treatment, Front. Neurosci., 2020, vol. 14, p. 660. https://doi.org/10.3389/fnins.2020.00660

Article  PubMed  PubMed Central  Google Scholar 

Snytnikova O., Telegina D., Savina E., Tsentalovich Y., and Kolosova N., Quantitative metabolomic analysis of the rat hippocampus: Effects of age and of the development of Alzheimer’s disease-like pathology, J. Alzheimers Dis., 2023 (in press). https://doi.org/10.3233/JAD-230706

Thompson, Ray M., Weickert, C.S., Wyatt, E., and Webster, M.J., Decreased BDNF, trkB-TK+ and GAD67 mRNA expression in the hippocampus of individuals with schizophrenia and mood disorders, J. Psychiatry Neurosci., 2011, vol. 36, no. 3, pp. 195–203. https://doi.org/10.1503/jpn.100048

Porcher, C., Medina, I., and Gaiarsa, J.L., Mechanism of BDNF modulation in GABAergic synaptic transmission in healthy and disease brains, Front. Cell Neurosci., 2018, vol. 12, p. 273. https://doi.org/10.3389/fncel.2018.00273

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hernandez-Rabaza, V., Cabrera-Pastor, A., Taoro-Gonzalez, L., Gonzalez-Usano, A., Agusti, A., Balzano, T., Llansola, M., and Felipo, V., Neuroinflammation increases GABAergic tone and impairs cognitive and motor function in hyperammonemia by increasing GAT-3 membrane expression. Reversal by sulforaphane by promoting M2 polarization of microglia, J. Neuroinflammation, 2016, vol. 13, no. 1, р. 83. https://doi.org/10.1186/s12974-016-0549-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kutiyanawalla, A., Promsote, W., Terry, A., and Pillai, A., Cysteamine treatment ameliorates alterations in GAD67 expression and spatial memory in heterozygous reeler mice, Int. J. Neuropsychopharmacol., 2012, vol. 15, no. 8, pp. 1073–1086. https://doi.org/10.1017/S1461145711001180

Article  CAS  PubMed  Google Scholar 

Liu, J., Feng, X., Wang, Y., Xia, X., and Zheng, J.C., Astrocytes: GABAceptive and GABAergic cells in the brain, Front. Cell Neurosci., 2022, vol. 16, p. 892497. https://doi.org/10.3389/fncel.2022.892497

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rudnitskaya, E.A., Burnyasheva, A.O., Kozlova, T.A., Peunov, D.A., Kolosova, N.G., and Stefanova, N.A., Changes in glial support of the hippocampus during the development of an Alzheimer’s disease-like pathology and their correction by mitochondria-targeted antioxidant SkQ1, Int. J. Mol. Sci., 2022, vol. 23, no. 3, p. 1134. https://doi.org/10.3390/ijms23031134

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, D.H., Kim, J.M., Park, S.J., Lee, S., Shin, C.Y., Cheong, J.H., and Ryu, J.H., Hippocampal extracellular signal-regulated kinase signaling has a role in passive avoidance memory retrieval induced by GABAA Receptor modulation in mice, Neuropsychopharmacology, 2012, vol. 37, no. 5, pp. 1234–1244. https://doi.org/10.1038/npp.2011.311

Article  CAS  PubMed  Google Scholar 

Kim, J., Lee, S., Kang, S., Kim, S.H., Kim, J.C., Yang, M., and Moon, C., Brain-derived neurotropic factor and GABAergic transmission in neurodegeneration and neuroregeneration, Neural. Regen. Res., 2017, vol. 12, no. 10, pp. 1733–1741. https://doi.org/10.4103/1673-5374.217353

Article  CAS  PubMed  PubMed Central  Google Scholar 

Govindpani, K., Calvo-Flores Guzman, B., Vinnakota, C., Waldvogel, H.J., Faull, R.L., and Kwakowsky, A., Towards a better understanding of GABAergic remodeling in Alzheimer’s disease, Int. J. Mol. Sci., 2017, vol. 18, no. 8, p. 1813. https://doi.org/10.3390/ijms18081813

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nykanen, N.P., Kysenius, K., Sakha, P., Tammela, P., and Huttunen, H.J., Gamma-aminobutyric acid type A (GABAA) receptor activation modulates tau phosphorylation, J. Biol. Chem., 2012, vol. 287, no. 9, pp. 6743–6752. https://doi.org/10.1074/jbc.M111.309385

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bazzari, A.H. and Parri, H.R., Neuromodulators and long-term synaptic plasticity in learning and memory: A steered-glutamatergic perspective, Brain Sci., 2019, vol. 9, no. 11, p. 300. https://doi.org/10.3390/brainsci9110300

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cercato, M.C., Vázquez, C.A., Kornisiuk, E., Aguirre, A.I., Colettis, N., Snitcofsky, M., Jerusalinsky, D.A., and Baez, M.V., GluN1 and GluN2A NMDA receptor subunits increase in the hippocampus during memory consolidation in the rat, Front. Behav. Neurosci., 2016, vol. 10, p. 242. https://doi.org/10.3389/fnbeh.2016.00242

Article  CAS  PubMed  Google Scholar 

Baez, M.V., Cercato, M.C., and Jerusalinsky, D.A., NMDA receptor subunits change after synaptic plasticity induction and learning and memory acquisition, Neural. Plast., 2018, vol. 2018, p. 5093048 https://doi.org/10.1155/2018/5093048

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boddum, K., Jensen, T.P., Magloire, V., Kristiansen, U., Rusakov, D.A., Pavlov, I., and Walker, M.C., Astrocytic GABA transporter activity modulates excitatory neurotransmission, Nat. Commun., 2016, vol. 7, p. 13572. https://doi.org/10.1038/ncomms13572

Article  CAS  PubMed  PubMed Central  Google Scholar 

Czapski, G.A. and Strosznajder, J.B., Glutamate and GABA in microglia–neuron cross-talk in Alzheimer’s disease, Int. J. Mol. Sci., 2021, vol. 22, no. 21, p. 11677. https://doi.org/10.3390/ijms222111677

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif