A phenotypic screening platform for identifying chemical modulators of astrocyte reactivity

Hasel, P. & Liddelow, S. A. Astrocytes. Curr. Biol. 31, R326–R327 (2021).

Article  CAS  PubMed  Google Scholar 

Allen, N. J. & Eroglu, C. Cell biology of astrocyte–synapse interactions. Neuron 96, 697–708 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nagai, J. et al. Behaviorally consequential astrocytic regulation of neural circuits. Neuron 109, 576–596 (2021).

Article  CAS  PubMed  Google Scholar 

Guttenplan, K. A. et al. Neurotoxic reactive astrocytes induce cell death via saturated lipids. Nature 599, 102–107 (2021).

Article  ADS  CAS  PubMed  Google Scholar 

Di Giorgio, F. P., Carrasco, M. A., Siao, M. C., Maniatis, T. & Eggan, K. Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat. Neurosci. 10, 608–614 (2007).

Article  PubMed  PubMed Central  Google Scholar 

Ilieva, H., Polymenidou, M. & Cleveland, D. W. Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J. Cell Biol. 187, 761–772 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meyer, K. et al. Direct conversion of patient fibroblasts demonstrates non-cell autonomous toxicity of astrocytes to motor neurons in familial and sporadic ALS. Proc. Natl Acad. Sci. USA 111, 829–832 (2014).

Article  ADS  CAS  PubMed  Google Scholar 

Clarke, L. E. et al. Normal aging induces A1-like astrocyte reactivity. Proc. Natl Acad. Sci. USA 115, E1896–E1905 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Wheeler, M. A. et al. MAFG-driven astrocytes promote CNS inflammation. Nature 578, 593–599 (2020).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Smith, H. L. et al. Astrocyte unfolded protein response induces a specific reactivity state that causes non-cell-autonomous neuronal degeneration. Neuron 105, 855–866 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burda, J. E. et al. Divergent transcriptional regulation of astrocyte reactivity across disorders. Nature 606, 557–564 (2022).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Dooves, S. et al. Astrocytes are central in the pathomechanisms of vanishing white matter. J. Clin. Invest. 126, 1512–1524 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Absinta, M. et al. A lymphocyte-microglia-astrocyte axis in chronic active multiple sclerosis. Nature 597, 709–714 (2021).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Leng, K. et al. CRISPRi screens in human astrocytes elucidate regulators of distinct inflammatory reactive states. Nat. Neurosci. 25, 1528–1542 (2022).

Yun, S. P. et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat. Med. 24, 931–938 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Najm, F. J. et al. Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo. Nature 522, 216–220 (2015).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Foo, L. C. et al. Development of a method for the purification and culture of rodent astrocytes. Neuron 71, 799–811 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pike, S. C., Welsh, N., Linzey, M. & Gilli, F. Theiler’s virus-induced demyelinating disease as an infectious model of progressive multiple sclerosis. Front. Mol. Neurosci. 15, 1019799 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chastain, E. M., Duncan, D. S., Rodgers, J. M. & Miller, S. D. The role of antigen presenting cells in multiple sclerosis. Biochim. Biophys. Acta 1812, 265–274 (2011).

Article  CAS  PubMed  Google Scholar 

Chung, W. S. et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504, 394–400 (2013).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Grubman, A. et al. A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation. Nat. Neurosci. 22, 2087–2097 (2019).

Article  CAS  PubMed  Google Scholar 

Al-Dalahmah, O. et al. Single-nucleus RNA-seq identifies Huntington disease astrocyte states. Acta Neuropathol. Commun. 8, 19 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smajic, S. et al. Single-cell sequencing of human midbrain reveals glial activation and a Parkinson-specific neuronal state. Brain 145, 964–978 (2022).

Article  PubMed  Google Scholar 

Loven, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320–334 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

Article  CAS  PubMed  Google Scholar 

Molofsky, A. V. & Deneen, B. Astrocyte development: a guide for the perplexed. Glia 63, 1320–1329 (2015).

Article  PubMed  Google Scholar 

Hartmann, K. et al. Complement 3+-astrocytes are highly abundant in prion diseases, but their abolishment led to an accelerated disease course and early dysregulation of microglia. Acta Neuropathol. Commun. 7, 83 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Malvaez, M. et al. HDAC3-selective inhibitor enhances extinction of cocaine-seeking behavior in a persistent manner. Proc. Natl Acad. Sci. USA 110, 2647–2652 (2013).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Suzuki, T. et al. Identification of highly selective and potent histone deacetylase 3 inhibitors using click chemistry-based combinatorial fragment assembly. PLoS ONE 8, e68669 (2013).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Srinivasan, R. et al. New transgenic mouse lines for selectively targeting astrocytes and studying calcium signals in astrocyte processes in situ and in vivo. Neuron 92, 1181–1195 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McQuown, S. C. et al. HDAC3 is a critical negative regulator of long-term memory formation. J. Neurosci. 31, 764–774 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gryder, B. E. et al. Histone hyperacetylation disrupts core gene regulatory architecture in rhabdomyosarcoma. Nat. Genet. 51, 1714–1722 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leus, N. G., Zwinderman, M. R. & Dekker, F. J. Histone deacetylase 3 (HDAC 3) as emerging drug target in NF-kappaB-mediated inflammation. Curr. Opin. Chem. Biol. 33, 160–168 (2016).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif