Blood–brain barrier disruption and sustained systemic inflammation in individuals with long COVID-associated cognitive impairment

Wu, Z. & McGoogan, J. M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 323, 1239–1242 (2020).

Article  CAS  PubMed  Google Scholar 

Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Helms, J. et al. Neurologic features in severe SARS-CoV-2 infection. N. Engl. J. Med. 382, 2268–2270 (2020).

Article  PubMed  Google Scholar 

Taquet, M., Geddes, J. R., Husain, M., Luciano, S. & Harrison, P. J. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry 8, 416–427 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Bohmwald, K., Gálvez, N. M. S., Ríos, M. & Kalergis, A. M. Neurologic alterations due to respiratory virus infections. Front. Cell. Neurosci. 12, 386 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amraei, R. et al. Extracellular vimentin is an attachment factor that facilitates SARS-CoV-2 entry into human endothelial cells. Proc. Natl Acad. Sci. USA 119, e2113874119 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cantuti-Castelvetri, L. et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 370, 856–860 (2020).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ni, W. et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit. Care 24, 422 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018).

Article  ADS  CAS  PubMed  Google Scholar 

Iadecola, C., Anrather, J. & Kamel, H. Effects of COVID-19 on the nervous system. Cell 183, 16–27 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lersy, F. et al. Cerebrospinal fluid features in patients with coronavirus disease 2019 and neurological manifestations: correlation with brain magnetic resonance imaging findings in 58 patients. J. Infect. Dis. 223, 600–609 (2021).

Article  CAS  PubMed  Google Scholar 

Schweitzer, F. et al. Cerebrospinal fluid analysis post-COVID-19 is not suggestive of persistent central nervous system infection. Ann. Neurol. 91, 150–157 (2022).

Article  CAS  PubMed  Google Scholar 

Thakur, K. T. et al. COVID-19 neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital. Brain 144, 2696–2708 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Yang, A. C. et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature 595, 565–571 (2021).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Stein, S. R. et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature 612, 758–763 (2022).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Monje, M. & Iwasaki, A. The neurobiology of long COVID. Neuron 110, 3484–3496 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Natale, N. R., Lukens, J. R. & Petri, W. A. Jr The nervous system during COVID-19: caught in the crossfire. Immunol. Rev. 311, 90–111 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abbott, N. J., Patabendige, A. A., Dolman, D. E. M., Yusof, S. R. & Begley, D. J. Structure and function of the blood–brain barrier. Neurobiol. Dis. 37, 13–25 (2010).

Article  CAS  PubMed  Google Scholar 

Greene, C., Hanley, N. & Campbell, M. Claudin-5: gatekeeper of neurological function. Fluids Barriers CNS 16, 3 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Lee, M.-H. et al. Microvascular injury in the brains of patients with Covid-19. N. Engl. J. Med. 384, 481–483 (2021).

Article  PubMed  Google Scholar 

Lee, M. H. et al. Neurovascular injury with complement activation and inflammation in COVID-19. Brain 145, 2555–2568 (2022).

Article  PubMed  Google Scholar 

DeOre, B. J., Tran, K. A., Andrews, A. M., Ramirez, S. H. & Galie, P. A. SARS-CoV-2 spike protein disrupts blood–brain barrier integrity via RhoA activation. J. Neuroimmune Pharmacol. 16, 722–728 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Krasemann, S. et al. The blood–brain barrier is dysregulated in COVID-19 and serves as a CNS entry route for SARS-CoV-2. Stem Cell Reports 17, 307–320 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pellegrini, L. et al. SARS-CoV-2 infects the brain choroid plexus and disrupts the blood–CSF barrier in human brain organoids. Cell Stem Cell 27, 951–961.e5 (2020).

Savarraj, J. et al. Brain injury, endothelial injury and inflammatory markers are elevated and express sex-specific alterations after COVID-19. J. Neuroinflammation 18, 277 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schwabenland, M. et al. Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia-T-cell interactions. Immunity 54, 1594–1610 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wenzel, J. et al. The SARS-CoV-2 main protease Mpro causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Nat. Neurosci. 24, 1522–1533 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Montalvan, V., Lee, J., Bueso, T., De Toledo, J. & Rivas, K. Neurological manifestations of COVID-19 and other coronavirus infections: a systematic review. Clin. Neurol. Neurosurg. 194, 105921 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ng Kee Kwong, K. C., Mehta, P. R., Shukla, G. & Mehta, A. R. COVID-19, SARS and MERS: a neurological perspective. J. Clin. Neurosci. 77, 13–16 (2020).

O’Doherty, L. et al. Study protocol for the St James’s Hospital, Tallaght University Hospital, Trinity College Dublin Allied Researchers’ (STTAR) Bioresource for COVID-19. HRB Open Res. 5, 20 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Ryan, F. J. et al. Long-term perturbation of the peripheral immune system months after SARS-CoV-2 infection. BMC Med. 20, 26 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Finlay, J. B. et al. Persistent post–COVID-19 smell loss is associated with immune cell infiltration and altered gene expression in olfactory epithelium. Sci. Transl. Med. 14, eadd0484 (2022).

Zhou, G., Lane, G., Cooper, S. L., Kahnt, T. & Zelano, C. Characterizing functional pathways of the human olfactory system. eLife 8, e47177 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saive, A.-L., Royet, J.-P. & Plailly, J. A review on the neural bases of episodic odor memory: from laboratory-based to autobiographical approaches. Front. Behav. Neurosci. 8, 240 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Phetsouphanh, C. et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat. Immunol. 23, 210–216 (2022).

Article  CAS  PubMed  Google Scholar 

Zheng, H.-Y. et al. Longitudinal transcriptome analyses show robust T cell immunity during recovery from COVID-19. Signal Transduct. Target. Ther. 5, 294 (2020).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Taquet, M. et al. Acute blood biomarker profiles predict cognitive deficits 6 and 12 months after COVID-19 hospitalizati

留言 (0)

沒有登入
gif