Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases

Chiti F, Dobson CM. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu Rev Biochem. 2017;86:27–68.

Article  CAS  PubMed  Google Scholar 

Knowles TPJ, Vendruscolo M, Dobson CM. The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol. 2014;15:384–96.

Article  CAS  PubMed  Google Scholar 

Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016;8:595–608.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi Y, Zhang W, Yang Y, Murzin AG, Falcon B, Kotecha A, et al. Structure-based classification of tauopathies. Nature. 2021;598:359–63.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Yang Y, Arseni D, Zhang W, Huang M, Lövestam S, Schweighauser M, et al. Cryo-EM structures of amyloid-β 42 filaments from human brains. Science. 2022;375:167–72.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Buxbaum JN, Dispenzieri A, Eisenberg DS, Fändrich M, Merlini G, Saraiva MJM, et al. Amyloid nomenclature 2022: update, novel proteins, and recommendations by the International Society of Amyloidosis (ISA) Nomenclature Committee. Amyloid. 2022;29:213–9.

Article  PubMed  Google Scholar 

Merlini G, Bellotti V. Molecular mechanisms of amyloidosis. N Engl J Med. 2003;349:583–96.

Article  CAS  PubMed  Google Scholar 

Wood JG, Mirra SS, Pollock NJ, Binder LI. Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (tau). Proc Natl Acad Sci. 1986;83:4040–3.

Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem. 1986;261:6084–9.

Hardy JA, Higgins GA. Alzheimer’s Disease: The amyloid cascade hypothesis. Science. 1992;256:184–5.

Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci. 1985;82:4245–9.

Spillantini MG, Schmidt ML, Lee VM-Y, Trojanowski JQ, Jakes R, Goedert M. α-Synuclein in Lewy bodies. Nature. 1997;388:839–40.

Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M. alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci U S A. 1998;95:6469–73.

Palato LM, Pilcher S, Oakes A, Lamba A, Torres J, Ledesma Monjaraz LI, et al. Amyloidogenicity of naturally occurring fulllength animal IAPP variants. J Pept Sci. 2019;25:e3199.

Westermark P, Wernstedt C, Wilander E, Sletten K. A novel peptide in the calcitonin gene related peptide family as an amyloid fibril protein in the endocrine pancreas. Biochem Biophys Res Commun. 1986;140:827–31.

van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388:9–21.

Article  PubMed  Google Scholar 

Sengupta U, Nilson AN, Kayed R. The role of amyloid-β oligomers in toxicity, propagation, and immunotherapy. eBioMedicine. 2016;6:42–9.

Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Clos AL, Jackson GR, Kayed R. Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice. Mol Neurodegener. 2011;6:39.

Article  PubMed  PubMed Central  Google Scholar 

Du F, Yu Q, Kanaan NM, Yan SS. Mitochondrial oxidative stress contributes to the pathological aggregation and accumulation of tau oligomers in Alzheimer’s disease. Hum Mol Genet. 2022;31:2498–507.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guerrero-Muñoz MJ, Gerson J, Castillo-Carranza DL. Tau oligomers: The toxic player at synapses in alzheimer’s disease. Front Cell Neurosci. 2015;9:1–10. Available from: https://www.frontiersin.org/articles/10.3389/fncel.2015.00464.

Cohen SIA, Linse S, Luheshi LM, Hellstrand E, White DA, Rajah L, et al. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc Natl Acad Sci USA. 2013;110:9758–63.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Meisl G, Yang X, Hellstrand E, Frohm B, Kirkegaard JB, Cohen SIA, et al. Differences in nucleation behavior underlie the contrasting aggregation kinetics of the Aβ40 and Aβ42 peptides. Proc Natl Acad Sci USA. 2014;111:9384–9.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Rodriguez Camargo DC, Sileikis E, Chia S, Axell E, Bernfur K, Cataldi RL, et al. Proliferation of Tau 304–380 fragment aggregates through autocatalytic secondary nucleation. ACS Chem Neurosci. 2021;12:4406–15.

Article  CAS  PubMed  Google Scholar 

Sachse C, Fändrich M, Grigorieff N. Paired β-sheet structure of an Aβ(1–40) amyloid fibril revealed by electron microscopy. Proc Natl Acad Sci USA. 2008;105:7462–6.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Gremer L, Schölzel D, Schenk C, Reinartz E, Labahn J, Ravelli RBG, et al. Fibril structure of amyloid-β(1–42) by cryo–electron microscopy. Science. 2017;358:116–9.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Lövestam S, Koh FA, van Knippenberg B, Kotecha A, Murzin AG, Goedert M, et al. Assembly of recombinant tau into filaments identical to those of Alzheimer’s disease and chronic traumatic encephalopathy. eLife. 2022;11:e76494.

Ghosh U, Thurber KR, Yau W-M, Tycko R. Molecular structure of a prevalent amyloid-β fibril polymorph from Alzheimer’s disease brain tissue. Proc Natl Acad Sci USA. 2021;118: e2023089118.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kollmer M, Close W, Funk L, Rasmussen J, Bsoul A, Schierhorn A, et al. Cryo-EM structure and polymorphism of Aβ amyloid fibrils purified from Alzheimer’s brain tissue. Nat Commun. 2019;10:4760.

Article  ADS  PubMed  PubMed Central  Google Scholar 

Fitzpatrick AWP, Falcon B, He S, Murzin AG, Murshudov G, Garringer HJ, et al. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature. 2017;547:185–90.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Falcon B, Zhang W, Schweighauser M, Murzin AG, Vidal R, Garringer HJ, et al. Tau filaments from multiple cases of sporadic and inherited Alzheimer’s disease adopt a common fold. Acta Neuropathol (Berl). 2018;136:699–708.

Article  CAS  PubMed  Google Scholar 

Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, et al. In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci USA. 2011;108:4194–9.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Emin D, Zhang YP, Lobanova E, Miller A, Li X, Xia Z, et al. Small soluble α-synuclein aggregates are the toxic species in Parkinson’s disease. Nat Commun. 2022;13:5512.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Fusco G, Chen SW, Williamson PTF, Cascella R, Perni M, Jarvis JA, et al. Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers. Science. 2017;358:1440–3.

Article  ADS  CAS  PubMed  Google Scholar 

Horne RI, Metrick MAI, Man W, Rinauro DJ, Brotzakis ZF, Chia S, et al. Secondary processes dominate the quiescent, spontaneous aggregation of α-synuclein at physiological pH with sodium salts. ACS Chem Neurosci. 2023;14:3125–31.

Buell AK, Galvagnion C, Gaspar R, Sparr E, Vendruscolo M, Knowles TPJ, et al. Solution conditions determine the relative importance of nucleation and growth processes in α-synuclein aggregation. Proc Natl Acad Sci USA. 2014;111:7671–6.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Guerrero-Ferreira R, Taylor NM, Mona D, Ringler P, Lauer ME, Riek R, et al. Cryo-EM structure of alpha-synuclein fibrils. eLife. 2018;7: e36402.

Article  PubMed  PubMed Central  Google Scholar 

Li Y, Zhao C, Luo F, Liu Z, Gui X, Luo Z, et al. Amyloid fibril structure of α-synuclein determined by cryo-electron microscopy. Cell Res. 2018;28:897–903.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boyer DR, Li B, Sun C, Fan W, Sawaya MR, Jiang L, et al. Structures of fibrils formed by α-synuclein hereditary disease mutant H50Q reveal new polymorphs. Nat Struct Mol Biol. 2019;26:1044–52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tuttle MD, Comellas G, Nieuwkoop AJ, Covell DJ, Berthold DA, Kloepper KD, et al. Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nat Struct Mol Biol. 2016;23:409–15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang Y, Shi Y, Schweighauser M, Zhang X, Kotecha A, Murzin AG, et al. Structures of α-synuclein filaments from human brains with Lewy pathology. Nature. 2022;610:791–5.

Article  ADS  CAS  PubMed  Google Scholar 

Burger D, Fenyi A, Bousset L, Stahlberg H, Melki R. Cryo-EM structure of alpha-synuclein fibrils amplified by PMCA from PD and MSA patient brains. bioRxiv. 2021;2021.07.08.451588. Available from: https://www.biorxiv.org/content/10.1101/2021.07.08.451588v1.

Strohäker T, Jung BC, Liou S-H, Fernandez CO, Riedel D, Becker S, et al. Structural heterogeneity of α-synuclein fibrils amplified from patient brain extracts. Nat Commun. 2019;10:5535.

Article  ADS  PubMed  PubMed Central  Google S

留言 (0)

沒有登入
gif