Lactic acid bacteria as an eco-friendly approach in plant production: Current state and prospects

Abd El Aty AA, Zohair MM (2020) Green-synthesis and optimization of an eco-friendly nanobiofungicide from Bacillus amyloliquefaciens MH046937 with antimicrobial potential against phytopathogens. Environ Nanotechnol Monit Manag 14:100309. https://doi.org/10.1016/j.enmm.2020.100309

Article  Google Scholar 

Abe Sato ST, Marques JM, da Luz de Freitas A, Sanches Progênio RC, Nunes MRT, Mota de Vasconcelos Massafra J, Gomes Moura F, Rogez H, (2021) Isolation and genetic identification of endophytic lactic acid bacteria from the Amazonian açai fruits: probiotics features of selected strains and their potential to inhibit pathogens. Front Microbiol 11:1–13. https://doi.org/10.3389/fmicb.2020.610524

Article  Google Scholar 

Abhyankar PS, Gunjal AB, Kapadnis BP, Ambade SV (2022) ​Potential of lactic acid bacteria in plant growth promotion. Indian J Agric Res 36:326–329. https://doi.org/10.18805/bkap374

Article  Google Scholar 

Ahimou F, Jacques P, Deleu M (2000) Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme Microb Technol 27:749–754. https://doi.org/10.1016/S0141-0229(00)00295-7

Article  CAS  PubMed  Google Scholar 

Ahlberg SH, Joutsjoki V, Korhonen HJ (2015) Potential of lactic acid bacteria in aflatoxin risk mitigation. Int J Food Microbiol 207:87–102. https://doi.org/10.1016/j.ijfoodmicro.2015.04.042

Article  CAS  PubMed  Google Scholar 

Ahmadsah LSF, Kim E, Jung YS, Kim HY (2018) Identification of LAB and fungi in Laru, a fermentation starter, by PCR-DGGE, SDS-PAGE, and MALDI-TOF MS. J Microbiol Biotechnol 28:32–39. https://doi.org/10.4014/jmb.1705.05044

Article  CAS  PubMed  Google Scholar 

Alawamleh A, ðurović G, Maddalena G, Guzzon R, Ganassi S, Hashmi MM, Wäckers F, Anfora G, De Cristofaro A (2021) Selection of lactic acid bacteria species and strains for efficient trapping of Drosophila suzukii. J inSects 12:1–13. https://doi.org/10.3390/insects12020153

Article  Google Scholar 

Alicja Niewiadomska JK, Niewiadomska A, Klama J (2005) Bacteriological urinalysis in patients after renal transplantation. Pol J Microbiol 54:43–48

PubMed  Google Scholar 

Alizadeh M, Vasebi Y, Safaie N (2020) Microbial antagonists against plant pathogens in Iran: a review. Open Agric J 5:404–440. https://doi.org/10.1515/opag-2020-0031

Article  Google Scholar 

Álvarez A, Manjarres JJ, Ramírez C, Bolívar G (2021) Use of an exopolysaccharide-based edible coating and lactic acid bacteria with antifungal activity to preserve the postharvest quality of cherry tomato. Lwt-Food Sci Technol 151:112225. https://doi.org/10.1016/j.lwt.2021.112225

Article  CAS  Google Scholar 

Ameen FA, Hamdan AM, El-Naggar MY (2020) Assessment of the heavy metal bioremediation efficiency of the novel marine lactic acid bacterium, Lactobacillus plantarum MF042018. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-019-57210-3

Article  CAS  Google Scholar 

Ananou S, Maqueda M, Martínez-Bueno M, Valdivia E (2007) Biopreservation, an ecological approach to improve the safety and shelf-life of foods. Communicating Current Research and Educational Topics and Trends in Applied Microbiology 475–486

Google Scholar 

Andreote FD, Pereira e Silva M de C (2017) Microbial communities associated with plants: learning from nature to apply it in agriculture. Curr Opin Microbiol 37:29–34. https://doi.org/10.1016/j.mib.2017.03.011

Article  PubMed  Google Scholar 

Axel C, Zannini E, Coffey A, Guo J, Waters DM, Arendt EK (2012) Ecofriendly control of potato late blight causative agent and the potential role of lactic acid bacteria: a review. Appl Microbiol Biotechnol 96:37–48. https://doi.org/10.1007/s00253-012-4282-y

Article  CAS  PubMed  Google Scholar 

Baniyah L, Nur Jannah S, Rukmi I, Sugiharto (2018) Molecular diversity of lactic acid bacteria on ileum broiler chicken fed by bran and bran fermentation. J Phys: Conf Ser 1025:012070. https://doi.org/10.1088/1742-6596/1025/1/012049

Article  CAS  Google Scholar 

Baptista RC, Horita CN, Sant’Ana AS (2020) Natural products with preservative properties for enhancing the microbiological safety and extending the shelf-life of seafood: a review. Int Food Res J 127:108762. https://doi.org/10.1016/j.foodres.2019.108762

Article  Google Scholar 

Barrios-Roblero C, Rosas-Quijano R, Salvador-Figueroa M, Gálvez-López D, Vázquez-Ovando A (2019) Antifungal lactic acid bacteria isolated from fermented beverages with activity against Colletotrichum gloeosporioides. Food Biosci 29:47–54. https://doi.org/10.1016/j.fbio.2019.03.008

Article  Google Scholar 

Bazireh H, Shariati P, Azimzadeh Jamalkandi S, Ahmadi A, Boroumand MA (2020) Isolation of novel probiotic Lactobacillus and Enterococcus strains from human salivary and fecal sources. Front Microbiol 11:1–12. https://doi.org/10.3389/fmicb.2020.597946

Article  Google Scholar 

Ben AK, Breeuwer P, Verbaarschot P, Rombouts FM, Akkermans ADL, De Vos WM, Abee T (2002) Multiparametric flow cytometry and cell sorting for the assessment of viable, injured, and dead bifidobacterium cells during bile salt stress. Appl Environ Microbiol 68:5209–5216. https://doi.org/10.1128/AEM.68.11.5209-5216.2002

Article  CAS  Google Scholar 

Ben AK, Vaughan EE, De Vos WM (2007) Advanced molecular tools for the identification of lactic acid bacteria. JN or J Nutr 137:741–747. https://doi.org/10.1093/jn/137.3.741s

Article  Google Scholar 

Bensch G, Rüger M, Wassermann M, Weinholz S, Reichl U, Cordes C (2014) Flow cytometric viability assessment of lactic acid bacteria starter cultures produced by fluidized bed drying. Appl Microbiol Biotechnol 98:4897–4909. https://doi.org/10.1007/s00253-014-5592-z

Article  CAS  PubMed  Google Scholar 

Bertani G, Savo Sardaro ML, Neviani E, Lazzi C (2019) AFLP protocol comparison for microbial diversity fingerprinting. J Appl Genet 60:217–223. https://doi.org/10.1007/s13353-019-00492-0

Article  CAS  PubMed  Google Scholar 

Bohn J, Yüksel-Dadak A, Dröge S, König H (2017) Isolation of lactic acid-forming bacteria from biogas plants. J Biotechnol 244:4–15. https://doi.org/10.1016/j.jbiotec.2016.12.015

Article  CAS  PubMed  Google Scholar 

Bojanic Rasovic M, Mayrhofer S, Ochome MAA, Ajanovic E, Zunabovic M, Martinovic A, Domig KJ (2018) Diversity of lactic acid bacteria isolated from traditional Montenegrin dairy products. Genetika 50:465–482. https://doi.org/10.2298/GENSR1802465B

Article  Google Scholar 

Bokulich NA, Mills DA (2012) Differentiation of mixed lactic acid bacteria communities in beverage fermentations using targeted terminal restriction fragment length polymorphism. Food Microbiol 31:126–132. https://doi.org/10.1016/j.fm.2012.02.007

Article  CAS  PubMed  Google Scholar 

Bonaterra A, Badosa E, Cabrefiga J, Francés J, Montesinos E (2012) Prospects and limitations of microbial pesticides for control of bacterial and fungal pomefruit tree diseases. Trees - Struct Funct 26:215–226. https://doi.org/10.1007/s00468-011-0626-y

Article  CAS  Google Scholar 

Bottari B, Agrimonti C, Gatti M, Neviani E, Marmiroli N (2013) Development of a multiplex real time PCR to detect thermophilic lactic acid bacteria in natural whey starters. Int J Food Microbiol 160:290–297. https://doi.org/10.1016/j.ijfoodmicro.2012.10.011

Article  CAS  PubMed  Google Scholar 

Bove CG, Lazzi C, Bernini V, Bottari B, Neviani E, Gatti M (2011) cDNA-amplified fragment length polymorphism to study the transcriptional. J Appl Microbiol 111:855–864

Article  CAS  PubMed  Google Scholar 

Busconi M, Reggi S, Fogher C (2008) Evaluation of biodiversity of lactic acid bacteria microbiota in the calf intestinal tracts. Anton Leeuw Int J G 94:145–155. https://doi.org/10.1007/s10482-008-9220-8

Article  CAS  Google Scholar 

Cai W, Tang F, Zhao X, Guo Z, Zhang Z, Dong Y, Shan C (2019) Different lactic acid bacteria strains affecting the flavor profile of fermented jujube juice. J Food Process Preserv 43:1–14. https://doi.org/10.1111/jfpp.14095

Article  CAS  Google Scholar 

Çakır E, Arıcı M, Durak MZ (2020) Biodiversity and techno-functional properties of lactic acid bacteria in fermented hull-less barley sourdough. J Biosci Bioeng 130:450–456. https://doi.org/10.1016/j.jbiosc.2020.05.002

Article  CAS  PubMed  Google Scholar 

Calmin G, Lefort F, Belbahri L (2008) Multi-loci sequence typing (MLST) for two lacto-acid bacteria (LAB) species: Pediococcus parvulus and P. damnosus. Mol Biotechnol 40:170–179. https://doi.org/10.1007/s12033-008-9073-4

Article  CAS  PubMed  Google Scholar 

Campanero-Rhodes MA, Palma AS, Menéndez M, Solís D (2020) Microarray strategies for exploring bacterial surface glycans and their interactions with glycan-binding proteins. Front Microbiol 10:2909. https://doi.org/10.3389/fmicb.2019.02909

Article  PubMed  PubMed Central  Google Scholar 

Castellano P, Pérez Ibarreche M, Blanco Massani M, Fontana C, Vignolo G (2017) Strategies for pathogen biocontrol using lactic acid bacteria and their metabolites: a focus on meat ecosystems and industrial environments. Microorganisms 5:38. https://doi.org/10.3390/microorganisms5030038

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ceapa C, Lambert J, van Limpt K, Wels M, Smokvina T, Knol J, Kleerebezem M (2015) Correlation of Lactobacillus rhamnosus genotypes and carbohydrate utilization signatures determined by phenotype profiling. Appl Environ Microbiol 81:5458–5470. https://doi.org/10.1128/AEM.00851-15

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen C, Cao Z, Li J, Tao C, Feng Y, Han Y (2020) A novel endophytic strain of Lactobacillus plantarum CM-3 with antagonistic activity against Botrytis cinerea on strawberry fruit. Biol Control 148:104306. https://doi.org/10.1016/j.biocontrol.2020.104306

Article  CAS  Google Scholar 

Chen J (2006) The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. International Workshop on Sustained Management of the Soil-Rhizosphere System for Efficient Crop Production and Fertilizer Use, Bangkok, pp 1-11

留言 (0)

沒有登入
gif