Identification of safe putative probiotics from various food products

Alp D, Kuleaşan H (2019) Adhesion mechanisms of lactic acid bacteria: conventional and novel approaches for testing. World J Microbiol Biotechnol 35:156. https://doi.org/10.1007/s11274-019-2730-x

Article  CAS  PubMed  Google Scholar 

Amaral DMF, Silva LF, Casarotti SN et al (2017) Enterococcus faecium and Enterococcus durans isolated from cheese: survival in the presence of medications under simulated gastrointestinal conditions and adhesion properties. J Dairy Sci 100:933–949. https://doi.org/10.3168/jds.2016-11513

Article  CAS  PubMed  Google Scholar 

Arellano-Ayala K, Ascencio-Valle FJ, Gutiérrez-González P et al (2020) Hydrophobic and adhesive patterns of lactic acid bacteria and their antagonism against foodborne pathogens on tomato surface (Solanum lycopersicum L.). J Appl Microbiol 129:876–891. https://doi.org/10.1111/jam.14672

Article  CAS  PubMed  Google Scholar 

Audisio MC, Torres MJ, Sabaté DC et al (2011) Properties of different lactic acid bacteria isolated from Apis mellifera L. bee-gut. Microbiol Res 166:1–13. https://doi.org/10.1016/j.micres.2010.01.003

Article  CAS  Google Scholar 

Aziz K, Tariq M, Zaidi A (2019) Biofilm development in L. fermentum under shear flow & sequential GIT digestion. FEMS Microbiol Lett 366:1–10. https://doi.org/10.1093/femsle/fnz064

Article  CAS  Google Scholar 

Bhakta JN, Bhattacharya S, Lahiri S, Panigrahi AK (2023) Probiotic characterization of arsenic-resistant lactic acid bacteria for possible application as arsenic bioremediation tool in fish for safe fish food production. Probiot Antimicrob Proteins 15:889–902. https://doi.org/10.1007/s12602-022-09921-9

Article  CAS  Google Scholar 

Bover-Cid S, Holzapfel WH (1999) Improved screening procedure for biogenic amine production by lactic acid bacteria. Int J Food Microbiol 53:33–41. https://doi.org/10.1016/s0168-1605(99)00152-x

Article  CAS  PubMed  Google Scholar 

Buntin N, de Vos W, Hongpattarakere T (2017) Variation of mucin adhesion, cell surface characteristics, and molecular mechanisms among Lactobacillus plantarum isolated from different habitats. Appl Microbiol Biotechnol 101:7663–7674. https://doi.org/10.1007/s00253-017-8482-3

Article  CAS  PubMed  Google Scholar 

Capozzi V, Russo P, Ladero V et al (2012) Biogenic amines degradation by Lactobacillus plantarum: toward a potential application in wine. Front Microbiol 3:12. https://doi.org/10.3389/fmicb.2012.00122

Article  Google Scholar 

Cervantes-Elizarrarás A, Cruz-Cansino N, Ramírez-Moreno E et al (2019) In vitro probiotic potential of lactic acid bacteria isolated from aguamiel and pulque and antibacterial activity against pathogens. Appl Sci 9:601. https://doi.org/10.3390/app9030601

Article  CAS  Google Scholar 

Cheon MJ, Lim SM, Lee NK et al (2020) Probiotic properties and neuroprotective effects of Lactobacillus buchneri KU200793 isolated from Korean fermented foods. Int J Mol Sci 21:1227. https://doi.org/10.3390/ijms21041227

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corry JEL, Curtis GDW, Baird RM, Adams M, Moss MO, Ogden I (2011) Handbook of culture media for food and water microbiology. Corry JEL, Curtis GDW, Baird RM (Eds). Perlego Ltd, London, UK. Retrieved from https://www.perlego.com/book/787652/handbook-of-culture-media-for-food-and-water-microbiology-pdf (Original work published 2011)

Cowan MM, Van der Mei HC, Stokroos I et al (1992) Heterogeneity of surfaces of subgingival bacteria as detected by zeta potential measurements. J Dent Res 71:1803–1806. https://doi.org/10.1177/00220345920710110701

Article  CAS  PubMed  Google Scholar 

De Castilho NPA, Nero LA, Todorov SD (2019) Molecular screening of beneficial and safety determinants from bacteriocinogenic lactic acid bacteria isolated from Brazilian artisanal calabresa. Lett Appl Microbiol 69:204–211. https://doi.org/10.1111/lam.13194

Article  CAS  PubMed  Google Scholar 

De la Fuente-Salcido NM, Castañeda-Ramírez JC, García-Almendárez BE et al (2015) Isolation and characterization of bacteriocinogenic lactic bacteria from M-Tuba and Tepache, two traditional fermented beverages in México. Food Sci Nutr 3:434–442. https://doi.org/10.1002/fsn3.236

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Wouters T, Jans C, Niederberger T et al (2015) Adhesion potential of intestinal microbes predicted by physico-chemical characterization methods. PLoS ONE 10:e0136437. https://doi.org/10.1371/journal.pone.0136437

Article  CAS  PubMed  PubMed Central  Google Scholar 

dos Santos KMO, De Matos CR, Salles HO et al (2020) Exploring beneficial/virulence properties of two dairy-related strains of Streptococcus infantarius subsp. infantarius. Probiotics Antimicrob Proteins 12:1524–1541. https://doi.org/10.1007/s12602-020-09637-8

Article  CAS  PubMed  Google Scholar 

EFSA (2012) Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J 10:2740. https://doi.org/10.2903/j.efsa.2012.2740

Article  CAS  Google Scholar 

Escobar-Ramírez MC, Jaimez-Ordaz J, Escorza-Iglesias VA et al (2020) Lactobacillus pentosus ABHEAU-05: An in vitro digestion resistant lactic acid bacterium isolated from a traditional fermented Mexican beverage. Rev Argent Microbiol 52(305–314):10. https://doi.org/10.1016/j.ram.2019.10.005

Article  Google Scholar 

FAO/WHO, Food and Agriculture Organization and World Health Organization (2002) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Report of a joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Cordoba, Argentina, Available from: https://www.iqb.es/digestivo/pdfs/probioticos.pdf. [Last accessed: January 29, 2023]

Garcia-Gonzalez N, Prete R, Battista N et al (2018) Adhesion properties of food-associated Lactobacillus plantarum strains on human intestinal epithelial cells and modulation of IL-8 release. Front Microbiol 9:2392. https://doi.org/10.3389/fmicb.2018.02392

Article  PubMed  PubMed Central  Google Scholar 

Georghiou PR, Doggett AM, Kielhofner MA et al (1994) Molecular fingerprinting of Legionella species by repetitive element PCR. J Clin Microbiol 32:2989–2994. https://doi.org/10.1128/jcm.32.12.2989-2994.1994

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gevers D, Huys G, Swings J (2001) Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 205:31–36. https://doi.org/10.1111/j.1574-6968.2001.tb10921.x

Article  CAS  PubMed  Google Scholar 

Gheziel C, Russo P, Arena MP et al (2019) Evaluating the probiotic potential of Lactobacillus plantarum strains from Algerian infant feces: towards the design of probiotic starter cultures tailored for developing countries. Probiotics Antimicrob Proteins 11:113–123. https://doi.org/10.1007/s12602-018-9396-9

Article  CAS  PubMed  Google Scholar 

Granato D, Bergonzelli GE, Pridmore RD et al (2004) Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins. Infect Immun 72:2160–2169. https://doi.org/10.1128/IAI.72.4.2160-2169.2004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo XH, Kim JM, Nam HM, Park SY, Kim JM (2010) Screening lactic acid bacteria from swine origins for multistrain probiotics based on in vitro functional properties. Anaerobe 16:321–326. https://doi.org/10.1016/j.anaerobe.2010.03.006

Article  PubMed  Google Scholar 

Gutiérrez-Sarmiento W, Peña-Ocaña BA, Lam-Gutiérrez A et al (2022) Microbial community structure, physicochemical characteristics and predictive functionalities of the Mexican tepache fermented beverage. Microb Res 260:127045. https://doi.org/10.1016/j.micres.2022.127045

Article  CAS  Google Scholar 

Halasz A, Baráth Á, Holzapfel WH (1999) The influence of starter culture selection on sauerkraut fermentation. Z Lebensm Unters Forsch 208:434–438. https://doi.org/10.1007/S002170050443

Article  CAS  Google Scholar 

Halebian S, Harris B, Finegold SM et al (1981) Rapid method that aids in distinguishing gram-positive from gram-negative anaerobic bacteria. J Clin Microbiol 13:444–448. https://doi.org/10.1128/jcm.13.3.444-448.1981

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han Q, Kong B, Chen Q et al (2017) In vitro comparison of probiotic properties of lactic acid bacteria isolated from Harbin dry sausages and selected probiotics. J Funct Foods 32:391–400. https://doi.org/10.1016/j.jff.2017.03.020

Article  CAS  Google Scholar 

Ji Y, Kim H, Park H et al (2013) Functionality and safety of lactic bacterial strains from Korean kimchi. Food Control 31:467–473. https://doi.org/10.1016/j.foodcont.2012.10.034

Article  CAS  Google Scholar 

Jung MJ, Kim J, Lee SH et al (2022) Role of combinated lactic acid bacteria in bacterial, viral, and metabolite dynamics during fermentation of vegetable food, kimchi. Food Res Int 157:111261. https://doi.org/10.1016/j.foodres.2022.111261

Article  CAS  PubMed  Google Scholar 

Kim E, Won JE, Yang SM et al (2022) Diversity of a lactic acid bacterial community during fermentation of gajami-sikhae, a traditional Korean fermented fish, as determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Foods 11:909. https://doi.org/10.3390/foods11070909

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim MJ, Kwak HS, Jung HY et al (2016) Microbial communities related to sensory attributes in Korean fermented soybean paste (doenjang). Food Res Int 89(Pt 1):724–732. https://doi.org/10.1016/j.foodres.2016.09.032

Article  CAS  PubMed  Google Scholar 

Kamarinou CS, Papadopoulou OS, Doulgeraki AI et al (2022) Mapping the key technological and functional characteristics of indigenous lactic acid bacteria isolated from Greek traditional dairy products. Microorganisms 10:246. https://doi.org/10.3390/microorganisms10020246

Article  CAS

留言 (0)

沒有登入
gif