Actinobacterial chalkophores: the biosynthesis of hazimycins

Kenney GE, Rosenzweig AC. Chalkophores. Annu Rev Biochem. 2018;87:645–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnstone TC, Nolan EM. Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Trans. 2015;44:6320–39.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim HJ, Graham DW, DiSpirito AA, Alterman MA, Galeva N, Larive CK, et al. Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria. Science. 2004;305:1612–5.

Article  ADS  CAS  PubMed  Google Scholar 

Kenney GE, Dassama LMK, Pandelia ME, Gizzi AS, Martinie RJ, Gao P, et al. The biosynthesis of methanobactin. Science. 2018;359:1411–16.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Anttila J, Heinonen P, Nenonen T, Pino A, Iwaï H, Kauppi E, et al. Is coproporphyrin III a copper-acquisition compound in Paracoccus denitrificans? Biochim Biophys Acta. 2011;1807:311–8.

Article  CAS  PubMed  Google Scholar 

Chaturvedi KS, Hung CS, Crowley JR, Stapleton AE, Henderson JP. The siderophore yersiniabactin binds copper to protect pathogens during infection. Nat Chem Biol. 2012;8:731–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koh EI, Robinson AE, Bandara N, Rogers BE, Henderson JP. Copper import in Escherichia coli by the yersiniabactin metallophore system. Nat Chem Biol. 2017;13:1016–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patteson JB, Putz AT, Tao L, Simke WC, Bryant LH 3rd, et al. Biosynthesis of fluopsin C, a copper-containing antibiotic from Pseudomonas aeruginosa. Science. 2021;374:1005–9.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Rothe W. The new antibiotic xanthocillin. Dtsch Med Wochenschr. 1954;79:1080–1.

Article  CAS  PubMed  Google Scholar 

Edenborough MS, Herbert RB. Naturally occurring isocyanides. Nat Prod Rep. 1988;5:229–45.

Article  CAS  PubMed  Google Scholar 

Garson MJ, Simpson JS. Marine isocyanides and related natural products-structure, biosynthesis and ecology. Nat Prod Rep. 2004;21:164–79.

Article  CAS  PubMed  Google Scholar 

Emsermann J, Kauhl U, Opatz T. Marine isonitriles and their related compounds. Mar Drugs. 2016;14:16.

Article  PubMed  PubMed Central  Google Scholar 

Hohlman RM, Sherman DH. Recent advances in hapalindole-type cyanobacterial alkaloids: biosynthesis, synthesis, and biological activity. Nat Prod Rep. 2021;38:1567–88.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Massarotti A, Brunelli F, Aprile S, Giustiniano M, Tron GC. Medicinal chemistry of isocyanides. Chem Rev. 2021;121:10742–88.

Article  CAS  PubMed  Google Scholar 

Lim FY, Won TH, Raffa N, Baccile JA, Wisecaver J, Rokas A, et al. Fungal isocyanide synthases and xanthocillin biosynthesis in aspergillus fumigatus. mBio. 2018;9:e00785–18.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raffa N, Won TH, Sukowaty A, Candor K, Cui C, Halder S, et al. Dual-purpose isocyanides produced by Aspergillus fumigatus contribute to cellular copper sufficiency and exhibit antimicrobial activity. Proc Natl Acad Sci USA. 2021;118:e2015224118.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hübner I, Shapiro JA, Hoßmann J, Drechsel J, Hacker SM, Rather PN, et al. Broad spectrum antibiotic xanthocillin X effectively kills acinetobacter baumanniivia dysregulation of heme biosynthesis. ACS Cent Sci. 2021;7:488–98.

Article  PubMed  PubMed Central  Google Scholar 

Wang L, Zhu M, Zhang Q, Zhang X, Yang P, Liu Z, et al. Diisonitrile natural product SF2768 functions as a chalkophore that mediates copper acquisition in Streptomyces thioluteus. ACS Chem Biol. 2017;12:3067–75.

Article  CAS  PubMed  Google Scholar 

Harris NC, Sato M, Herman NA, Twigg F, Cai W, Liu J, et al. Biosynthesis of isonitrile lipopeptides by conserved nonribosomal peptide synthetase gene clusters in Actinobacteria. Proc Natl Acad Sci USA. 2017;114:7025–30.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Mehdiratta K, Singh S, Sharma S, Bhosale RS, Choudhury R, Masal DP, et al. Kupyaphores are zinc homeostatic metallophores required for colonization of Mycobacterium tuberculosis. Proc Natl Acad Sci USA. 2022;119:e2110293119.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Del Rio Flores A, Narayanamoorthy M, Cai W, Zhai R, Yang S, Shen Y, et al. Biosynthesis of isonitrile lipopeptide metallophores from pathogenic mycobacteria. Biochemistry. 2023;62:824–34.

Article  PubMed  Google Scholar 

Ueda K, Tomaru Y, Endoh K, Beppu T. Stimulatory effect of copper on antibiotic production and morphological differentiation in Streptomyces tanashiensis. J Antibiot. 1997;50:693–5.

Article  CAS  Google Scholar 

Keijser BJ, van Wezel GP, Canters GW, Kieser T, Vijgenboom E. The ram-dependence of Streptomyces lividans differentiation is bypassed by copper. J Mol Microbiol Biotechnol. 2000;2:565–74.

CAS  PubMed  Google Scholar 

Worrall JA, Vijgenboom E. Copper mining in Streptomyces: enzymes, natural products and development. Nat Prod Rep. 2010;27:742–56.

Article  CAS  PubMed  Google Scholar 

Locatelli FM, Goo KS, Ulanova D. Effects of trace metal ions on secondary metabolism and the morphological development of Streptomycetes. Metallomics. 2016;8:469–80.

Article  CAS  PubMed  Google Scholar 

González-Quiñónez N, Corte-Rodríguez M, Álvarez-Fernández-García R, Rioseras B, López-García MT, Fernández-García G, et al. Cytosolic copper is a major modulator of germination, development and secondary metabolism in Streptomyces coelicolor. Sci Rep. 2019;9:4214. 12

Article  ADS  PubMed  PubMed Central  Google Scholar 

Kim Wright JJ, Cooper AB, McPhail AT, Merrill Y, Nagabhushan TL, Puar MS. X-Ray crystal structure determination and synthesis of the new isonitrile-containing antibiotics, hazimycin factors 5 and 6. J Chem Soc Chem Commun. 1982;1188–90.

Marquez JA, Horan AC, Kalyanpur M, Lee BK, Loebenberg D, Miller GH, et al. The hazimicins, a new class of antibiotics. Taxonomy, fermentation, isolation, characterization and biological properties. J Antibiot. 1983;36:1101–8.

Article  CAS  Google Scholar 

Koyama N, Sato H, Tomoda H. Discovery of new hazimycin congeners from Kitasatospora sp. P07101. Acta Pharm Sin B. 2015;5:564–8.

Article  PubMed  PubMed Central  Google Scholar 

Briza P, Eckerstorfer M, Breitenbach M. The sporulation-specific enzymes encoded by the DIT1 and DIT2 genes catalyze a two-step reaction leading to a soluble LL-dityrosine-containing precursor of the yeast spore wall. Proc Natl Acad Sci USA. 1994;91:4524–8.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Brady SF, Clardy J. Cloning and heterologous expression of isocyanide biosynthetic genes from environmental DNA. Angew Chem Int Ed Engl. 2005;44:7063–5.

Article  CAS  PubMed  Google Scholar 

Drake EJ, Gulick AM. Three-dimensional structures of Pseudomonas aeruginosa PvcA and PvcB, two proteins involved in the synthesis of 2-isocyano-6,7-dihydroxycoumarin. J Mol Biol. 2008;384:193–205.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crawford JM, Kontnik R, Clardy J. Regulating alternative lifestyles in entomopathogenic bacteria. Curr Biol. 2010;20:69–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang YB, Cai W, Del Rio Flores A, Twigg FF, Zhang W. Facile discovery and quantification of isonitrile natural products via tetrazine-based click reactions. Anal Chem. 2020;92:599–602.

Article  CAS  PubMed  Google Scholar 

Funabashi M, Yang Z, Nonaka K, Hosobuchi M, Fujita Y, Shibata T, et al. An ATP-independent strategy for amide bond formation in antibiotic biosynthesis. Nat Chem Biol. 2010;6:581–6.

Article  CAS  PubMed  Google Scholar 

Goda M, Hashimoto Y, Shimizu S, Kobayashi M. Discovery of a novel enzyme, isonitrile hydratase, involved in nitrogen-carbon triple bond cleavage. J Biol Chem. 2001;276:23480–5.

留言 (0)

沒有登入
gif