Two novel bacteriophages isolated from the environment that can help control activated sludge foaming

Abusam A, Mydlarczyk A, Al-Salameen F, Ahmed MI (2017) Identification of the most probable causes for filamentous bacteria over-proliferation in Riqqa wastewater treatment plant, Kuwait. Desalin Water Treat 72:78–84. https://doi.org/10.5004/dwt.2017.20637

Article  CAS  Google Scholar 

Arndt D, Grant JR, Marcu A et al (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44(W1):W16–W21. https://doi.org/10.1093/nar/gkw387

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bankevich A, Nurk S, Antipov D et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477. https://doi.org/10.1089/cmb.2012.0021

Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

Bernhardt TG, Wang IN, Struck DK, Young R (2001) A protein antibiotic in the phage Q beta virion: diversity in lysis targets. Science 292(5525):2326–2329. https://doi.org/10.1126/science.1058289

Article  CAS  PubMed  Google Scholar 

Das R, Chanakya HN, Rao LKARYA (2022) Study towards understanding foaming and foam stability in urban lakes. J Environ Manage 322:116111. https://doi.org/10.1016/j.jenvman.2022.116111

Article  CAS  PubMed  Google Scholar 

Davenport RJ, Pickering RL, Goodhead AK, Courtis TP (2008) A universal threshold concept for hydrophobic mycolata in activated sludge foaming. Water Res 42(13):3446–4345. https://doi.org/10.1016/j.watres.2008.02.033

Article  CAS  PubMed  Google Scholar 

de los Reyes FL (2010) Challenges in determining causation in structure-function studies using molecular biological techniques. Water Res 44(17):4948–4957. https://doi.org/10.1016/j.watres.2010.07.038

Article  CAS  PubMed  Google Scholar 

Dedeo CL, Teschke CM, Alexandrescu AT (2020) Keeping it together: structures, functions, and applications of viral decoration proteins. Viruses 12(10):1163. https://doi.org/10.3390/v12101163

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dlangamandla C, Basitere M, Okeleye BI, Chidi BS, Ntwampe SKO (2021) Biofoam formation and deformation in global wastewater treatment systems. Water Pract Technol 16(1):1–18. https://doi.org/10.2166/wpt.2020.113

Article  Google Scholar 

Dunkel T, Gallegos ELD, Bock C, Lange A, Hoffmann D, Boenigk J, Denecke M (2018) Illumina sequencing for the identification of filamentous bulking and foaming bacteria in industrial-activated sludge plants. Int J Environ Sci Technol 15(6):1139–1158. https://doi.org/10.1007/s13762-017-1484-y

Article  CAS  Google Scholar 

Dyson ZA, Tucci J, Seviour RJ, Petrovski S (2016) Isolation and characterization of bacteriophage SPI1, which infects the activated-sludge foaming bacterium Skermania piniformis. Adv Virol 161(1):149–158. https://doi.org/10.1007/s00705-015-2631-8

Article  CAS  Google Scholar 

Dyson ZA, Tucci J, Seviour RJ, Petrovski S (2015) Lysis to kill: evaluation of the lytic abilities, and genomics of nine bacteriophages infective for Gordonia spp. and their potential use in activated sludge foam biocontrol. Plos One 10(8):e0134512. https://doi.org/10.1371/journal.pone.0134512

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goddard AJ, Forster CF (2010) Microbial ecology of activated sludge preface. Microbial Ecology of Activated Sludge VII-+

Google Scholar 

Jenkins D, Richard MG, Daigger GT (2003) Manual on the causes and control of activated sludge bulking, foaming, and other solids separation problems, 3rd edn. CRC Press, London, p 236. https://doi.org/10.1201/9780203503157

Book  Google Scholar 

Liu M, Gill JJ, Young R, Summer EJ (2015) Bacteriophages of wastewater foaming-associated filamentous Gordonia reduce host levels in raw activated sludge. Sci Rep 5:13754. https://doi.org/10.1038/srep13754

Article  PubMed  PubMed Central  Google Scholar 

Mamais D, Marneri M, Noutsopoulos C (2012) Causes and control practices of filamentous foaming in wastewater treatment plants. Water Pract Technol 7(3):wpt2012049. https://doi.org/10.2166/wpt.2012.049

Article  Google Scholar 

McNeil MM, Brown JM (1994) The medically important aerobic actinomycetes: epidemiology and microbiology. Clin Microbiol Rev 7(3):357–417. https://doi.org/10.1128/cmr.7.3.357

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mesnage S, Foster SJ (2013) N-Acetylmuramoyl-l-alanine amidase. Handbook of Proteolytic Enzymes Elsevier 1401–1407

Article  Google Scholar 

Michael NB, Pierre-Henri LG, Hayes McDonald W et al (2001) Mus81-Eme1 are essential components of a Holliday junction resolvase. Cell 107:537–548. https://doi.org/10.1016/S0092-8674(01)00536-0

Article  Google Scholar 

Nigel LB, Jivko VS, Stephen PK, Hobman JL (2003) The MerR family of transcriptional regulators. FEMS Microbiol Rev 27(2–3):145–163. https://doi.org/10.1016/S0168-6445(03)00051-2

Article  CAS  Google Scholar 

Pajdak-Stos A, Kocerba-Soroka W, Fyda J, Sobczyk M, Fialkowska E (2017) Foam-forming bacteria in activated sludge effectively reduced by rotifers in laboratory- and real-scale wastewater treatment plant experiments. Environ Sci Pollut Res 24(14):13004–13011. https://doi.org/10.1007/s11356-017-8890-z

Article  CAS  Google Scholar 

Pedulla ML, Ford ME, Houtz JM et al (2003) Origins of highly mosaic mycobacteriophage genomes. Cell 113:171–182. https://doi.org/10.1016/S0092-8674(03)00233-2

Article  CAS  PubMed  Google Scholar 

Petrovski S, Seviour RJ, Tillett D (2011a) Genome sequence and characterization of the Tsukamurella bacteriophage TPA2. Appl Environ Microbiol 2 77(4):1389–1398. https://doi.org/10.1128/AEM.01938-10

Article  CAS  Google Scholar 

Petrovski S, Seviour RJ, Tillett D (2011b) Characterization of the genome of the polyvalent lytic bacteriophage GTE2, which has potential for biocontrol of Gordonia-, Rhodococcus-, and Nocardia-stabilized foams in activated sludge plants. Appl Environ Microbiol 77(22):3923–3929. https://doi.org/10.1128/AEM.00025-11

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petrovski S, Seviour RJ, Tillett D (2013) Genome sequence and characterization of a Rhodococcus equi phage REQ1. Virus Genes 46(3):588–590

Article  CAS  PubMed  Google Scholar 

Pujol R, Duchene P, Schetrite S, Canler JP (1991) Biological foams in activated sludge plants: characterization and situation. Water Res 25(11):1399–1404. https://doi.org/10.1016/0043-1354(91)90118-A

Article  CAS  Google Scholar 

Srividhya KV, Krishnaswamy S (2007) Sub-classification and targeted characterization of prophage-encoded two-component cell lysis cassette. J Biosci 32(5):979–990. https://doi.org/10.1007/s12038-007-0097-x

Article  CAS  PubMed  Google Scholar 

Stephanie T, Teagan LB, Joseph T et al (2019) Isolation and characterization of bacteriophage NTR1 infectious for Nocardia transvalensis and other Nocardia species. Virus Genes 55:257–265. https://doi.org/10.1007/s11262-018-1625-5

Article  CAS  Google Scholar 

Torsten S (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14):2068–2069. https://doi.org/10.1093/bioinformatics/btu153

Article  CAS  Google Scholar 

Tsang YF, Sin SN, Chua H (2008) Nocardia foaming control in activated sludge process treating domestic wastewater. Biores Technol 99(9):3381–3388. https://doi.org/10.1016/j.biortech.2007.08.012

Article  CAS  Google Scholar 

Withey S, Cartmell E, Avery LM, Stephenson T (2005) Bacteriophages-potential for application in wastewater treatment processes. Sci Total Environ 339(1–3):1–18. https://doi.org/10.1016/j.scitotenv.2004.09.021

Article  CAS  PubMed  Google Scholar 

Zheng F, Long QX, Xie JP (2012) The function and regulatory network of WhiB and WhiB-like protein from comparative genomics and systems biology perspectives. Cell Biochem Biophys 63(2):103–108. https://doi.org/10.1007/s12013-012-9348-z

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif