Patterns of Expression of the Key Genes of the BDNF System and Serotonin Receptors in the Brain of OXYS Rats in the Development of the Signs of Alzheimer’s Disease

Liu, R.M., Aging, cellular senescence, and Alzheimer’s disease, Int. J. Mol. Sci., 2022, vol. 23, no. 4, p. 1989. https://doi.org/10.3390/ijms23041989

Article  CAS  PubMed  PubMed Central  Google Scholar 

Soria Lopez, J.A., González, H.M., and Léger, G.C., Alzheimer’s disease, Handb. Clin. Neurol., 2019, vol. 167, pp. 231–255. https://doi.org/10.1016/B978-0-12-804766-8.00013-3

Article  PubMed  Google Scholar 

Zagrebelsky, M., Tacke, C., and Korte, M., BDNF signaling during the lifetime of dendritic spines, Cell Tissue Res., 2020, vol. 382, pp. 185–199. https://doi.org/10.1007/s00441-020-03226-5

Article  PubMed  PubMed Central  Google Scholar 

Minichiello, L., TrkB signalling pathways in LTP and learning, Nat. Rev. Neurosci., 2009, vol. 10, pp. 850–860. https://doi.org/10.1038/nrn2738

Article  CAS  PubMed  Google Scholar 

Ibrahim, A.M., Chauhan, L., Bhardwaj, A., et al., Brain-derived neurotropic factor in neurodegenerative disorders, Biomedicines, 2022, vol. 10. https://doi.org/10.3390/biomedicines10051143

Allen, S.J., Watson, J.J., Shoemark, D.K., et al., GDNF, NGF and BDNF as therapeutic options for neurodegeneration, Pharmacol. Ther., 2013, vol. 138, pp. 155–175. https://doi.org/10.1016/j.pharmthera.2013.01.004

Article  CAS  PubMed  Google Scholar 

Invernizzi, S., Simoes Loureiro, I., Kandana Arachchige, K.G., and Lefebvre, L., Late-life depression, cognitive impairment, and relationship with Alzheimer’s disease, Dement. Geriatr. Cogn. Disord., 2022, vol. 50, pp. 414–424. https://doi.org/10.1159/000519453

Article  CAS  Google Scholar 

Roux, C.M., Leger, M., and Freret, T., Memory disorders related to hippocampal function: The interest of 5‑HT(4)Rs targeting, Int. J. Mol. Sci., 2021, vol. 22, no. 21, p. 12082. https://doi.org/10.3390/ijms222112082

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nirogi, R., Jayarajan, P., Shinde, A., et al., Progress in investigational agents targeting serotonin-6 receptors for the treatment of brain disorders, Biomolecules, 2023, vol. 13, no. 2, p. 309. https://doi.org/10.3390/biom13020309

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang, S., Sydney, E.J., Runyan, A.M., et al., 5-HT4 receptor agonists treatment reduces tau pathology and behavioral deficit in the PS19 mouse model of tauopathy, Preprint of bioRxiv Prepr. Serv. Biol., 2023. https://doi.org/10.1101/2023.02.03.526871

Labus, J., Röhrs, K.-F., Ackmann, J., et al., Amelioration of tau pathology and memory deficits by targeting 5-HT7 receptor, Prog. Neurobiol., 2021, vol. 197, p. 101900. https://doi.org/10.1016/j.pneurobio.2020.101900

Article  CAS  PubMed  Google Scholar 

Jahreis, K., Brüge, A., Borsdorf, S., et al., Amisulpride as a potential disease-modifying drug in the treatment of tauopathies, Alzheimers Dement., 2023. https://doi.org/10.1002/alz.13090

Popova, N.K. and Naumenko, V.S., Neuronal and behavioral plasticity: The role of serotonin and BDNF systems tandem, Expert Opin. Ther. Targets, 2019, vol. 23, pp. 227–239. https://doi.org/10.1080/14728222.2019.1572747

Article  CAS  PubMed  Google Scholar 

Homberg, J.R., Molteni, R., Calabrese, F., and Riva, M.A., The serotonin–BDNF duo: Developmental implications for the vulnerability to psychopathology, Neurosci. Biobehav. Rev., 2014, vol. 43, pp. 35–47. https://doi.org/10.1016/j.neubiorev.2014.03.012

Article  CAS  PubMed  Google Scholar 

Ilchibaeva, T., Tsybko, A., Zeug, A., et al., Serotonin receptor 5-HT2A regulates TrkB receptor function in heteroreceptor complexes, Cells, 2022, vol. 11. https://doi.org/10.3390/cells11152384

Stefanova, N.A., Muraleva, N.A., Korbolina, E.E., et al., Amyloid accumulation is a late event in sporadic Alzheimer’s disease-like pathology in nontransgenic rats, Oncotarget, 2015, vol. 6, pp. 1396–1413. https://doi.org/10.18632/oncotarget.2751

Article  PubMed  Google Scholar 

Stefanova, N.A., Maksimova, K.Y., Kiseleva, E., et al., Melatonin attenuates impairments of structural hippocampal neuroplasticity in OXYS rats during active progression of Alzheimer’s disease-like pathology, J. Pineal Res., 2015, vol. 59, pp. 163–177. https://doi.org/10.1111/jpi.12248

Article  CAS  PubMed  Google Scholar 

Rudnitskaya, E.A., Kolosova, N.G., and Stefanova, N.A., Impact of changes in neurotrophic supplementation on development of Alzheimer’s disease-like pathology in OXYS rats, Biochem., 2017, vol. 82, pp. 318–329. https://doi.org/10.1134/S0006297917030105

Article  CAS  Google Scholar 

Tyumentsev, M.A., Stefanova, N.A., Muraleva, N.A., et al., Mitochondrial dysfunction as a predictor and driver of Alzheimer’s disease-like pathology in OXYS rats., J. Alzheimers. Dis., 2018, vol. 63, pp. 1075–1088. https://doi.org/10.3233/JAD-180065

Article  CAS  PubMed  Google Scholar 

Kolosova, N.G., Stefanova, N.A., and Sergeeva, S.V., OXYS rats: A prospective model for evaluation of antioxidant availability in prevention and therapy of accelerated aging and age-related cognitive decline, in Handbook of Cognitive Aging: Causes, Processes and Effects (Aging Issues, Health and Financial Alternatives Series), 2011, ISBN 9781608760282.

Kulikov, A.V., Naumenko, V.S., Voronova, I.P., et al., Quantitative RT-PCR assay of 5-HT1A and 5-HT2A serotonin receptor MRNAs using genomic DNA as an external standard, J. Neurosci. Methods, 2005, vol. 141, p. 97–101. https://doi.org/10.1016/j.jneumeth.2004.06.005

Article  CAS  PubMed  Google Scholar 

Naumenko, V.S. and Kulikov, A.V., Quantitative assay of 5-HT1A receptor gene expression in the brain, Mol. Biol., 2006, vol. 40, p. 30–36. https://doi.org/10.1134/S0026893306010067/METRICS

Article  CAS  Google Scholar 

Naumenko, V.S., Osipova, D.V., Kostina, E.V., and Kulikov, A.V., Utilization of a two-standard system in real-time PCR for quantification of gene expression in the brain, J. Neurosci. Methods, 2008, vol. 170, pp. 197–203. https://doi.org/10.1016/j.jneumeth.2008.01.008

Article  CAS  PubMed  Google Scholar 

Gao, L., Zhang, Y., Sterling, K., and Song, W., Brain-derived neurotrophic factor in Alzheimer’s disease and its pharmaceutical potential, Transl. Neurodegener., 2022, vol. 11, pp. 1–34. https://doi.org/10.1186/s40035-022-00279-0

Article  CAS  Google Scholar 

Rudnitskaya, E.A., Maksimova, K.Y., Muraleva, N.A., et al., Beneficial effects of melatonin in a rat model of sporadic Alzheimer’s disease, Biogerontology, 2015, vol. 16, pp. 303–316. https://doi.org/10.1007/s10522-014-9547-7

Article  CAS  PubMed  Google Scholar 

Rudnitskaya, E.A., Kozlova, T.A., Burnyasheva, A.O., et al., Alterations of hippocampal neurogenesis during development of Alzheimer’s disease-like pathology in OXYS rats, Exp. Gerontol., 2019, vol. 115, pp. 32–45. https://doi.org/10.1016/j.exger.2018.11.008

Article  CAS  PubMed  Google Scholar 

Rudnitskaya, E.A., Kozlova, T.A., Burnyasheva, A.O., et al., Features of postnatal hippocampal development in a rat model of sporadic Alzheimer’s disease, Front. Neurosci., 2020, vol. 14, p. 533. https://doi.org/10.3389/fnins.2020.00533

Article  PubMed  PubMed Central  Google Scholar 

Stefanova, N.A., Muraleva, N.A., Maksimova, K.Y., et al., An antioxidant specifically targeting mitochondria delays progression of Alzheimer’s disease-like pathology, Aging (Albany, New York), 2016, vol. 8, p. 2713–2733. https://doi.org/10.18632/aging.101054

Article  CAS  Google Scholar 

Wang, Z.-H., Xiang, J., Liu, X., et al., Deficiency in BDNF/TrkB neurotrophic activity stimulates δ-secretase by upregulating C/EBPβ in Alzheimer’s disease, Cell Rep., 2019, vol. 28, pp. 655–669. https://doi.org/10.1016/j.celrep.2019.06.054

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hosseini, S., Vázquez-Villegas, P., Rito-Palomares, M., and Martinez-Chapa, S.O., Enzyme-Linked Immunosorbent Assay (ELISA): From A to Z, 2018, Springer, 2018, ISBN 9789811067655.

Book  Google Scholar 

Lorke, D.E., Lu, G., Cho, E., and Yew, D.T., Serotonin 5-HT2A and 5-HT6 receptors in the prefrontal cortex of Alzheimer and normal aging patients, BMC Neurosci., 2006, vol. 7, рр. 1–8. https://doi.org/10.1186/1471-2202-7-36

Article  CAS  Google Scholar 

Yuede, C.M., Wallace, C.E., Davis, T.A., et al., Pimavanserin, a 5HT(2A) receptor inverse agonist, rapidly suppresses Aβ production and related pathology in a mouse model of Alzheimer’s disease, J. Neurochem., 2021, vol. 156, рр. 658–673. https://doi.org/10.1111/jnc.15260

Article  CAS  PubMed  PubMed Central  Google Scholar 

Solas, M., Van Dam, D, Janssens, J., et al., 5-HT(7) Receptors in Alzheimer’s disease, Neurochem. Int., 2021, vol. 150. https://doi.org/10.1016/j.neuint.2021.105185

Molobekova, C.A., Kondaurova, E.M., Ilchibaeva, T.V., et al., Amisulpride decreases tau protein hyperphosphorylation in the brain of OXYS rats, Curr. Alzheimer Res., 2023. https://doi.org/10.2174/1567205020666230828144651

Fidalgo, S., Ivanov, D.K., and Wood, S.H., Serotonin: From top to bottom, Biogerontology, 2013, vol. 14, pp. 21–45. https://doi.org/10.1007/s10522-012-9406-3

Article  CAS  PubMed  Google Scholar 

Madsen, K., Haahr, M.T., Marner, L., et al., Age and sex effects on 5-HT 4 receptors in the human brain: A 11 CSB207145 PET study, J. Cereb. Blood Flow Metab., 2011, vol. 31, p. 1475–1481. https://doi.org/10.1038/jcbfm.2011.11

Article  PubMed  PubMed Central  Google Scholar 

Rebholz, H., Friedman, E., and Castello, J., Alterations of expression of the serotonin 5-HT4 receptor in brain disorders, Int. J. Mol. Sci., 2018, vol. 19. https://doi.org/10.3390/ijms19113581

Zhang, X.X., Tian, Y., Wang, Z.T., et al., The epidemiology of Alzheimer’s disease modifiable risk factors and prevention, J. Prev. Alzheimer’s Dis., 2021, vol. 8, pp. 313–321. https://doi.org/10.14283/JPAD.2021.15

Article  Google Scholar 

留言 (0)

沒有登入
gif