The Relationship Between Systemic Lupus Erythematosus and Osteoporosis Based on Different Ethnic Groups: a Two-Sample Mendelian Randomization Analysis

Chin KY, Ng BN, Rostam MKI, Muhammad Fadzil NFD, Raman V, Mohamed Yunus F, Syed Hashim SA, Ekeuku SO (2022) A Mini review on osteoporosis: from biology to pharmacological management of bone loss. J Clin Med 11(21):6434. https://doi.org/10.3390/jcm11216434

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu X, Bai W, Zheng H (2021) Twelve years of GWAS discoveries for osteoporosis and related traits: advances, challenges and applications. Bone Res 9(1):23. https://doi.org/10.1038/s41413-021-00143-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang X, Zhang Q, Zhang H, Lu Q (2022) A contemporary update on the diagnosis of systemic lupus erythematosus. Clin Rev Allergy Immunol 63(3):311–329. https://doi.org/10.1007/s12016-021-08917-7

Article  PubMed  Google Scholar 

Barber MRW, Drenkard C, Falasinnu T, Hoi A, Mak A, Kow NY, Svenungsson E, Peterson J, Clarke AE, Ramsey-Goldman R (2021) Global epidemiology of systemic lupus erythematosus. Nat Rev Rheumatol 17(10):642. https://doi.org/10.1038/s41584-021-00690-3

Article  PubMed  Google Scholar 

Xia J, Luo R, Guo S, Yang Y, Ge S, Xu G, Zeng R (2019) Prevalence and risk factors of reduced bone mineral density in systemic lupus erythematosus patients: a meta-analysis. Biomed Res Int 2019:3731648. https://doi.org/10.1155/2019/3731648

Article  PubMed  PubMed Central  Google Scholar 

Bultink IE, Vis M, van der Horst-Bruinsma IE, Lems WF (2012) Inflammatory rheumatic disorders and bone. Curr Rheumatol Rep 14(3):224–230. https://doi.org/10.1007/s11926-012-0252-8

Article  PubMed  PubMed Central  Google Scholar 

Bultink IEM (2018) Bone disease in connective tissue disease/systemic lupus erythematosus. Calcif Tissue Int 102(5):575–591. https://doi.org/10.1007/s00223-017-0322-z

Article  CAS  PubMed  Google Scholar 

Garelick D, Pinto SM, Farinha F, Pires T, Khan E, Isenberg D (2021) Fracture risk in systemic lupus erythematosus patients over 28 years. Rheumatology (Oxford) 60(6):2765–2772. https://doi.org/10.1093/rheumatology/keaa705

Article  CAS  PubMed  Google Scholar 

Mendoza-Pinto C, Rojas-Villarraga A, Molano-González N, Jiménez-Herrera EA, León-Vázquez ML, Montiel-Jarquín Á, García-Carrasco M, Cervera R (2018) Bone mineral density and vertebral fractures in patients with systemic lupus erythematosus: a systematic review and meta-regression. PLoS ONE 13(6):e0196113. https://doi.org/10.1371/journal.pone.0196113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simeakis G, Anagnostouli M, Fakas N, Koutsikos J, Papatheodorou A, Chanopoulos K, Athanasiou K, Papatheodorou G, Zapanti E, Alevizaki M, Kaltsas G, Terpos E (2023) High-dose intravenous steroid treatment seems to have no long-term negative effect on bone mineral density of young and newly diagnosed multiple sclerosis patients: a pilot study. Biomedicines 11(2):603. https://doi.org/10.3390/biomedicines11020603

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu TY, Griffith JF, Au SK, Tang XL, Kwok AW, Leung PC, Li EK, Tam LS (2014) Bone mineral density change in systemic lupus erythematosus: a 5-year followup study. J Rheumatol 41(10):1990–1997. https://doi.org/10.3899/jrheum.131190

Article  PubMed  Google Scholar 

Mendoza-Pinto C, García-Carrasco M, Juárez-Melchor D, Munguía-Realpozo P, Etchegaray-Morales I, Santiago-Martín N, Ayón-Aguilar J, Méndez-Martínez S (2021) A retrospective analysis of longitudinal changes in bone mineral density in women with systemic lupus erythematosus. Calcif Tissue Int 109(4):363–371. https://doi.org/10.1007/s00223-021-00845-0

Article  CAS  PubMed  Google Scholar 

Ugarte-Gil MF, Mak A, Leong J et al (2021) Impact of glucocorticoids on the incidence of lupus-related major organ damage: a systematic literature review and meta-regression analysis of longitudinal observational studies. Lupus Sci Med 8(1):e000590. https://doi.org/10.1136/lupus-2021-000590

Article  PubMed  PubMed Central  Google Scholar 

Davey Smith G, Hemani G (2014) Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet 23(R1):R89–R98. https://doi.org/10.1093/hmg/ddu328

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G (2008) Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 27(8):1133–1163. https://doi.org/10.1002/sim.3034

Article  MathSciNet  PubMed  Google Scholar 

Pierce BL, Burgess S (2013) Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am J Epidemiol 178(7):1177–1184. https://doi.org/10.1093/aje/kwt084

Article  PubMed  PubMed Central  Google Scholar 

Skrivankova VW, Richmond RC, Woolf BAR et al (2021) Strengthening the reporting of observational studies in epidemiology using mendelian randomization: the STROBE-MR statement. JAMA 326(16):1614–1621. https://doi.org/10.1001/jama.2021.18236

Article  PubMed  Google Scholar 

Skrivankova VW, Richmond RC, Woolf BAR et al (2021) Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): explanation and elaboration. BMJ 375:n2233. https://doi.org/10.1136/bmj.n2233

Article  PubMed  PubMed Central  Google Scholar 

Ishigaki K, Akiyama M, Kanai M et al (2020) Large-scale genome-wide association study in a Japanese population identifies novel susceptibility loci across different diseases. Nat Genet 52(7):669–679. https://doi.org/10.1038/s41588-020-0640-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Conroy MC, Lacey B, Bešević J, Omiyale W, Feng Q, Effingham M, Sellers J, Sheard S, Pancholi M, Gregory G, Busby J, Collins R, Allen NE (2023) UK Biobank: a globally important resource for cancer research. Br J Cancer 128(4):519–527. https://doi.org/10.1038/s41416-022-02053-5

Article  PubMed  Google Scholar 

Kurki MI, Karjalainen J, Palta P et al (2023) FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613(7944):508–518. https://doi.org/10.1038/s41586-022-05473-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Richards JB, Rivadeneira F, Inouye M et al (2008) Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371(9623):1505–1512. https://doi.org/10.1016/S0140-6736(08)60599-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359(9321):1929–1936. https://doi.org/10.1016/S0140-6736(02)08761-5

Article  PubMed  Google Scholar 

Medina-Gomez C, Kemp JP, Trajanoska K et al (2018) Life-course genome-wide association study meta-analysis of total body BMD and assessment of age-specific effects. Am J Hum Genet 102(1):88–102. https://doi.org/10.1016/j.ajhg.2017.12.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng HF, Forgetta V, Hsu YH et al (2015) Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature 526(7571):112–117. https://doi.org/10.1038/nature14878

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang YF, Zhang Y, Lin Z et al (2021) Identification of 38 novel loci for systemic lupus erythematosus and genetic heterogeneity between ancestral groups. Nat Commun 12(1):772. https://doi.org/10.1038/s41467-021-21049-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bentham J, Morris DL, Graham DSC et al (2015) Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat Genet 47(12):1457–1464. https://doi.org/10.1038/ng.3434

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burgess S, Dudbridge F, Thompson SG (2016) Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods. Stat Med 35(11):1880–1906. https://doi.org/10.1002/sim.6835

Article  MathSciNet  PubMed  Google Scholar 

Bowden J, Davey Smith G, Haycock PC et al (2016) Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol 40(4):304–314. https://doi.org/10.1002/gepi.21965

Article  PubMed  PubMed Central  Google Scholar 

Hartwig FP, Davey Smith G, Bowden J (2017) Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol 46(6):1985–1998. https://doi.org/10.1093/ije/dyx102

Article  PubMed  PubMed Central  Google Scholar 

Burgess S, Thompson SG (2011) Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol 40(3):755–764. https://doi.org/10.1093/ije/dyr036

Article  PubMed  Google Scholar 

Deng Y, Wong MCS (2023) Association between rheumatoid arthritis and osteoporosis in Japanese populations: a Mendelian randomization study. Arthritis Rheumatol. https://doi.org/10.1002/art.42502

留言 (0)

沒有登入
gif