Impact of Bio-geo-ecological Determinants on the Current and Future Mosquito Fauna in the Kingdom of Saudi Arabia: Challenges and Emerging Innovative Bio-computational Opportunities

Karunamoorthi K. Research on mosquitocidal properties of plants: a call for enduring collaborative bridge between the scientific laboratories and the society. Med Aromat Plants. 2015;4:e165. https://doi.org/10.4172/2167-0412.1000e165.

Article  Google Scholar 

CDC Anopheles Mosquitoes. World Health Organization, Geneva, Switzerland. 2012. Available at: http://www.cdc.gov/malaria/about/biology/mosquitoes/ (accessed on 19th May 2023).

Stevenson A. Oxford Dictionary of English. Oxford University Press. 2010. pp. 64–65. ISBN 978–0–19–957112–3.

Meigen JW. Systematische Beschreibung der Bekannten Europäischen Zweiflügeligen Insekten Vol. 1. Forstmann, Aachen. 1881;332.

CDC (2015) Vectors of lymphatic filariasis. Centres for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA 30333, United States. Available at: http://www.cdc.gov/parasites/lymphaticfilariasis/gen_info/vectors.html (accessed on 16th May 2023).

Karunamoorthi K, Girmay A, Fekadu S. Larvicidal efficacy of Ethiopian ethnomedicinal plant Juniperus procera essential oil against Afrotropical malaria vector Anopheles arabiensis (Diptera: Culicidae). Asian Pac J Trop Biomed. 2014;4(S1):S99–106. https://doi.org/10.12980/APJTB.4.2014C687.

Article  PubMed  PubMed Central  Google Scholar 

Karunamoorthi K, Bekele M. Changes in malaria indices in an Ethiopian health centre: a five year retrospective analysis. Health Scope. 2012;1(3):118–26. https://doi.org/10.5812/jhs.7076.

Article  Google Scholar 

Karunamoorthi K. Impact of global warming on vector-borne diseases: implications for future integrated vector management. J Socialomics. 2013;1:e113. https://doi.org/10.4172/2167-0358.1000e113.

Article  Google Scholar 

World Malaria Report - 2022. World Health Organization, Geneva, Switzerland. Available at: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022 [accessed on 01st June 2023].

Karunamoorthi K, Mulelam A, Wassie F. Laboratory evaluation of traditional insect/mosquito repellent plants against Anopheles arabiensis, the predominant malaria vector in Ethiopia. Parasitol Res. 2008;103(3):529–34.

Article  PubMed  Google Scholar 

El-kersh TA, Ahmed AM, Al-sheikh YA. Isolation and characterization of native Bacillus thuringiensis strains from Saudi Arabia with enhanced larvicidal toxicity against the mosquito vector Anopheles gambiae (s.l.). Parasites Vectors. 2016;9:647.

Article  PubMed  PubMed Central  Google Scholar 

Chase JM, Knight TM. Drought-induced mosquito outbreaks in wetlands. Ecol Letters. 2003;6:1017–24.

Article  Google Scholar 

Karunamoorthi K. Vector control: a cornerstone in the malaria elimination campaign. Clin Microbiol Infect. 2011;17(11):1608–16. https://doi.org/10.1111/j.1469-0691.2011.03664.x.

Article  CAS  PubMed  Google Scholar 

Pemola N, Jauhari, R. Occurrence of Aedes mosquitoes (Diptera: Culicidae) in urban areas of doon valley, (uttarakhand), india. 2014.

Norris D. Mosquito-borne diseases as a consequence of land use change. EcoHealth. 2004;1:19–24. https://doi.org/10.1007/s10393-004-0008-7.

Article  Google Scholar 

Alahmed AM, Munawar K, Khalil SMS, et al. Assessment and an updated list of the mosquitoes of Saudi Arabia. Parasites Vectors. 2019;12:356. https://doi.org/10.1186/s13071-019-3579-4.

Article  PubMed  PubMed Central  Google Scholar 

Amini MA, Hanafi-Bojd A, Aghapour AA, et al. Larval habitats and species diversity of mosquitoes (Diptera: Culicidae) in West Azerbaijan Province, North-western Iran. BMC Ecol. 2020;20(1):60. Amini et al. discussed how various physico-chemico-biological and environmental variables affect the larval habitats and species diversity in Iran.

Mattingly PF, Knight KL. The mosquito of Arabia I. Bull British Museum (Natural History). 1956;4(3):91–141.

Google Scholar 

Population Pyramid. Saudi Arabia 2023. Available at: Population of Saudi Arabia 2023 - PopulationPyramid.net. [accessed on 24th May 2023].

Al Ahmad MA, Sallam MF, Khuriji MA, et al. Checklist and pictorial key to fourth instar larvae of mosquitoes (Diptera: Culicidae) of Saudi Arabia. J Med Entomol. 2011;48(4):717–37.

Article  PubMed  Google Scholar 

Zahar AR. Review of ecology of malaria vectors in the Eastern Mediterranean Region. Bull World Health Org. 1974;50:427–40.

CAS  PubMed  PubMed Central  Google Scholar 

Büttiker W. Observation on urban mosquitoes in Saudi Arabia. In: Wittmer W, Büttiker W, editors. Fauna of Saudi Arabia, vol. 3. Basle: Pro Entomologia c/o Natural History Museum, Ciba Geigy Ltd.; 1981.

Wills WM, Jakob WL, Francy DB, et al. Sindbis virus isolations from Saudi Arabian mosquitoes. Trans Roy Soc Trop Med Hyg. 1985;79:63–6.

Article  CAS  PubMed  Google Scholar 

Abdullah MAR, Merdan AI. Distribution and ecology of the aquatic mosquito fauna in the South Western Saudi Arabia. J Egypt Soc Parasitol. 1995;25(3):815–83.

CAS  PubMed  Google Scholar 

Al-Zahrani M. Potential of arbovirus vectors in Tihamah area, Saudi Arabia. Thesis: Liverpool University; United Kingdom; 2001.

Google Scholar 

Jupp PG, Kemp A, Grobbelaar A, et al. The 2000 epidemic of Rift valley fever in Saudi Arabia: mosquito vector studies. Med Vet Entomol. 2002;16:245–52.

Article  CAS  PubMed  Google Scholar 

Godsey MS Jr, Abdel-Mohsin M, et al. First record of Aedes (Stegomyia) unilineatus in the Kingdom of Saudi Arabia. J Am Mosq Control Assoc. 2003;19(1):84–6.

PubMed  Google Scholar 

Abdoon AMMO, Al Shahrani AM. Prevalence and distribution of anopheline mosquitoes in malaria endemic areas of Asir region. Saudi Arabia East Mediter Health J. 2003;9(3):240–7.

Article  CAS  Google Scholar 

AlKhreji MA. Survey and distribution of mosquito species (Diptera: Culicidae) and description of its habitat in Riyadh district, Kingdom of Saudi Arabia. M.Sc. Thesis, King Saud University, Kingdom of Saudi Arabia. 2005.

Azzaam MA. A report of the integrated control of the insects carrying Rift Valley Fever Virus in the Kingdom of Saiudi Arabia. King Abdulaziz City for Science and Technology. 2006.

Al Ghamdi K, Alikhan M, Mahayoub J, et al. Studies on identification and population dynamics of Anopheline mosquito from Jeddah, Saudi Arabia. Biosci Biotech Res Commun. 2008;19–24.

Kheir SM, Alahmed AM, Al Kuriji MA, et al. Distribution and seasonal activity of mosquitoes in al Madinah Al Munwwrah, Saudi Arabia. J Egypt Soc Parasitol. 2010;40(1):215–27.

CAS  PubMed  Google Scholar 

Mahyoub JA, Al-Harbi OS, Al-Ghamdi KM, et al. Population dynamics of different mosquito genera and species in Makkah city, Saudi Arabia. Biosci Biotech Res Comm. 2015;8(2):116–25.

Google Scholar 

Ahmed AM, Shaalan EA, Aboul-Soud MAM, et al. Mosquito vectors survey in the AL-Ahsaa district of eastern Saudi Arabia. J Insect Sci. 2011;11:176.

Article  PubMed  PubMed Central  Google Scholar 

Alahmed AM. Mosquito fauna (Diptera: Culicidae) of the Eastern Region of Saudi Arabia and their seasonal abundance. J King Saud Uni-Sci. 2012;24(1):55–62.

Article  Google Scholar 

Alikhan M, Al Ghamdi K, Mahyoub JA. Aedes mosquito species in western Saudi Arabia. J Insect Sci. 2014;4:69. https://doi.org/10.1093/jis/14.1.69.

Article  Google Scholar 

•• Fang Y, Tambo E, Xue JB, et al. Detection of DENV-2 and insect-specific Flaviviruses in mosquitoes collected from Jeddah, Saudi Arabia. Front Cell Infect Microbiol. 2021;11:626–638. https://doi.org/10.3389/fcimb.2021.626368. Fang et al. reported the detection of DENV-2 among the collected Aedes species mosquitoes.

•• Noureldin E, Dafalla A, Hakami A, et al. Culex (Diptera: Culicidae) mosquitoes in Jazan Region, Saudi Arabia, and their molecular identification. Inter J Zool. 2021;1–12. Noureldin et al. collected and identified several species of Culex mosquitoes in the Jazan region of Saudi Arabia by using advanced molecular tools.

•• Alzahrani, MH, Elamin YE, Abdullah M, et al. Distribution of mosquitoes and the first record of Aedes (Stegomyia) aegypti (Linnaeus, 1762) (Diptera: Culicidae) in the Riyadh Province, Kingdom of Saudi Arabia. Inter J Mosq Res. 2021;8(3):34–43. Alzahrani et al. documented the distribution of various species of mosquitoes and also first time identified and reported the Aedes aegypti in the Riyadh Province, Kingdom of Saudi Arabia.

• Eifan S, Hanif A, Nour I, et al. Distribution and molecular identification of Culex pipiens and Culex tritaeniorhynchus as potential vectors of Rift Valley Fever Virus in Jazan, Saudi Arabia. Pathogens. 2021;10(10):1334. https://doi.org/10.3390/pathogens10101334. Eifan et al. documented the distribution of Culex pipiens and Cx. tritaeniorhynchus in Jazan, Saudi Arabia and identified through bio-molecular techniques.

Alghamdi TS, Al Zahrani MR, Gharsan FN, et al. Identification of mosquito species and determination of population density in the Taif governorate, Saudi Arabia. J Entomol Acarol Res. 2021;53:9303. Alghamdi et al. identified various species of mosquitoes and reported how the bio-geo-climatical concomitant factors determine and influence the population density of mosquitoes in the Taif province of Saudi Arabia.

Alahmed AM, Al Kuriji MA, Kheir SM, et al. Mosquito fauna (Diptera: Culicidae) and seasonal activity in Makka Al Mukarramah Region, Saudi Arabia. J Egypt Soc Parasitol. 2009;39(3):991–1013.

CAS  PubMed  Google Scholar 

Mwangangi JM, Mbogo CM, Muturi EJ, et al. Influence of biological and physicochemical characteristics of larval habitats on the body size of Anopheles gambiae mosquitoes (Diptera: Culicidae) along the Kenyan coast. J Vector Borne Dis. 2007;44(2):122.

PubMed  PubMed Central  Google Scholar 

Hyelemad A, Kayode OI, Christian UA, et al. Evaluation of critical larval habitat physico-chemical factors on embryonic development and adult fitness of Culex quinquefasciatus mosquitoes (Diptera: Culicidae). Malaya J Biosci. 2018;5(2):48–56.

CAS  Google Scholar 

Hanafi-Bojd AA, Sedaghat MM, Vatandoost H, et al. Predicting environmentally suitable areas for Anopheles superpictus Grassi (sl), Anopheles maculipennis Meigen (sl.) and Anopheles sacharovi Favre (Diptera: Culicidae) in Iran. Parasites Vectors. 2018;11(1):382.

Article  PubMed  PubMed Central  Google Scholar 

Piyaratne MK, Amerasinghe FP, Amerasinghe PH, et al. Physico-chemical characteristics of Anopheles culicifacies and Anopheles varuna breeding water in a dry zone stream in Sri Lanka. J Vector Borne Dis. 2005;42.

Manguin S, Boëte C. Global impact of mosquito biodiversity, human vector-borne diseases and environmental change. The Importance of Biological Interactions in the Study of Biodiversity. Intech 2011.

WHO. Manual on environmental management for mosquito control, with special emphasis on malaria vectors: World Health Organization; 1982;2:61.

Camp JV, Karuvantevida N, Chouhna H, et al. Mosquito biodiversity and mosquito-borne viruses in the United Arab Emirates. Parasites Vectors. 2019;12:153. https://doi.org/10.1186/s13071-019-3417-8.

Article  PubMed  PubMed Central  Google Scholar 

Karunamoorthi K, Sabesan S. Insecticide resistance in insect vectors of disease with special reference to mosquitoes: a potential threat to global public health. Health Scope. 2013;2(1):4–18. https://doi.org/10.5812/jhs.9840.

Article  Google Scholar 

Jaleta K, Hill |T, Seyoum SR, et al. Agro-ecosystems impact malaria prevalence: large-scale irrigation drives vector population in Western Ethiopia. Malar J. 2013;1(12): https://doi.org/10.1186/1475-2875-12-350.

Karunamoorthi K, Mohammed A, Jemal Z. Peasant association member’s knowledge, attitudes, and practices towards safe use of pesticide management. Am J Ind Med. 2011;54(12):965–70. https://doi.org/10.1002/ajim.21008.

Article  PubMed  Google Scholar 

Karunamoorthi K, Yirgalem A. Insecticide risk indicators and occupational insecticidal poisoning in indoor residual spraying. Health Scope. 2013;1(4):166–73. https://doi.org/10.5812/jhs.8344.

Article  Google Scholar 

Reiter P. Climate change and mosquito-borne diseases. Environ Health Persp. 2001;109:141–61.

Google Scholar 

Delgado-Petrocelli L, Camardiel A, Aguilar VH, et al. Geospatial tools for the identification of a malaria corridor in Estado Sucre, a Venezuelan north-eastern state. Geospat Health. 2011;5:169–76.

Article  PubMed  Google Scholar 

Hales S, De Wet N, Maidonald J, et al. Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet. 2002;360:830–4.

Article  PubMed  Google Scholar 

Shaman J, Day JF. Reproductive phase locking of mosquito populations in response to rainfall frequency. PLoS One. 2007;2.

Garrett-Jones C, Grab B. The assessment of insecticidal impact on the malaria mosquito’s vectorial capacity, from data on the proportion of parous females. Bull World Health Org. 1964;31:71–86.

CAS  PubMed  PubMed Central  Google Scholar 

Vittor AY, Willim P, Gilman RH, et al. Linking deforestation to malaria in the amazon: characterization of the breeding habitat of the principal malaria vector, Anopheles darlingi. Am J Trop Med Hyg. 2013;81:5–12.

留言 (0)

沒有登入
gif