Beyond genetics: driving cancer with the tumour microenvironment behind the wheel

Varmus, H. E., Weiss, R. A., Friis, R. R., Levinson, W. & Bishop, J. M. Detection of avian tumor virus-specific nucleotide sequences in avian cell DNAs (reassociation kinetics-RNA tumor viruses-gas antigen-Rous sarcoma virus, chick cells). Proc. Natl Acad. Sci. USA 69, 20–24 (1972). First evidence of an oncogene.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gerlinger, M. et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 46, 225–233 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McGranahan, N. et al. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Sci. Transl. Med. 7, 283ra254 (2015).

Article  Google Scholar 

Hodis, E. et al. Stepwise-edited, human melanoma models reveal mutations’ effect on tumor and microenvironment. Science 376, eabi8175 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Drost, J. et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature 521, 43–47 (2015).

Article  CAS  PubMed  Google Scholar 

Tauriello, D. V. F. et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–543 (2018).

Article  CAS  PubMed  Google Scholar 

Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990). A study suggesting that sequential accumulation of oncogenes drives colorectal cancer initiation, progression and metastasis.

Article  CAS  PubMed  Google Scholar 

Yuan, S. et al. Ras drives malignancy through stem cell crosstalk with the microenvironment. Nature 612, 555–563 (2022). Deciphers miscommunication between an oncogenic HRAS skin stem cell and its microenvironment that generates a TME and CSC state resembling malignant, invasive SCC.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alonso-Curbelo, D. et al. A gene-environment-induced epigenetic program initiates tumorigenesis. Nature 590, 642–648 (2021). Demonstrates how inflammation induces chromatin remodelling to promote pancreatic ductal adenocarcinoma initiation.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hart, J. R. et al. The butterfly effect in cancer: a single base mutation can remodel the cell. Proc. Natl Acad. Sci. USA 112, 1131–1136 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sweet-Cordero, E. A. & Biegel, J. A. The genomic landscape of pediatric cancers: implications for diagnosis and treatment. Science 363, 1170–1175 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rahrmann, E. P. et al. The NALCN channel regulates metastasis and nonmalignant cell dissemination. Nat. Genet. 54, 1827–1838 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin, X. et al. A metastasis map of human cancer cell lines. Nature 588, 331–336 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mintz, B. Teratocarcinoma cells as vehicles for introducing mutant genes into mice. Differentiation 13, 25–27 (1979). Early evidence that cancer cells introduced into mouse blastocysts can result in normal embryogenesis and contribute to healthy tissues in adult chimeric mice.

Article  CAS  PubMed  Google Scholar 

Mintz, B. & Illmensee, K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Natl Acad. Sci. USA 72, 3585–3589 (1975).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ge, Y. et al. Stem cell lineage infidelity drives wound repair and cancer. Cell 169, 636–650.e614 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dolberg, D. S., Hollingsworth, R., Hertle, M. & Bissell, M. J. Wounding and its role in RSV-mediated tumor formation. Science 230, 676–678 (1985). Early evidence that wounding cooperates with oncogenes to induce tumorigenesis.

Article  CAS  PubMed  Google Scholar 

Vassar, R. & Fuchs, E. Transgenic mice provide new insights into the role of TGF-α during epidermal development and differentiation. Genes Dev. 5, 714–727 (1991).

Article  CAS  PubMed  Google Scholar 

Moses, H. L., Roberts, A. B. & Derynck, R. The discovery and early days of TGF-β: a historical perspective. Cold Spring Harb. Persp. Biol. 8, a021865 (2016).

Article  Google Scholar 

Sieweke, M. H., Thompson, N. L., Sporn, M. B. & Bissell, M. J. Mediation of wound-related Rous sarcoma virus tumorigenesis by TGF-β. Science 248, 1656–1660 (1990).

Article  CAS  PubMed  Google Scholar 

Martincorena, I. et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jonason, A. S. et al. Frequent clones of p53-mutated keratinocytes in normal human skin. Proc. Natl Acad. Sci. USA 93, 14025–14029 (1996).

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Visser, K. E. & Joyce, J. A. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 41, 374–403 (2023).

Article  PubMed  Google Scholar 

Walsh, L. A. & Quail, D. F. Decoding the tumor microenvironment with spatial technologies. Nat. Immunol. 24, 1982–1993 (2023).

Article  CAS  PubMed  Google Scholar 

Stahl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

Article  CAS  PubMed  Google Scholar 

Nacev, B. A. et al. The expanding landscape of ‘oncohistone’ mutations in human cancers. Nature 567, 473–478 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burdziak, C. et al. Epigenetic plasticity cooperates with cell-cell interactions to direct pancreatic tumorigenesis. Science 380, eadd5327 (2023). Confirms that inflammatory cues drive chromatin remodelling and pancreatic cancer progression.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Almagro, J., Messal, H. A., Elosegui-Artola, A., van Rheenen, J. & Behrens, A. Tissue architecture in tumor initiation and progression. Trends Cancer 8, 494–505 (2022).

Article  CAS  PubMed  Google Scholar 

Miao, Y. et al. Adaptive immune resistance emerges from tumor-initiating stem cells. Cell 177, 1172–1186.e1114 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oshimori, N., Oristian, D. & Fuchs, E. TGF-β promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell 160, 963–976 (2015). Discovers that TGFβ from the TME drives skin carcinoma progression and resistance to chemotherapeutics.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nader, G. P. F. et al. Compromised nuclear envelope integrity drives TREX1-dependent DNA damage and tumor cell invasion. Cell 184, 5230–5246.e5222 (2021).

Article  CAS  PubMed  Google Scholar 

Szczerba, B. M. et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 566, 553–557 (2019).

Article  CAS  PubMed  Google Scholar 

Gkountela, S. et al. Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell 176, 98–112.e114 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghajar, C. M. et al. The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol. 15, 807–817 (2013).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif