Sequence of Events in the Pathogenesis of Axial Spondyloarthritis: A Current Review—2023 SPARTAN Meeting Proceedings

van der Linden S, Valkenburg HA, Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum. 1984;27:361–8.

Article  PubMed  Google Scholar 

Nakamura A, Haroon N. Recent updates in the immunopathology of type 3 immunity-mediated enthesitis. Curr Rheumatol Rep. 2021;23:31. https://doi.org/10.1007/s11926-021-00995-y.

Article  CAS  PubMed  Google Scholar 

de Blecourt J, Polman A, de Blecourt-Meindersma T. Hereditary factors in rheumatoid arthritis and ankylosing spondylitis. Ann Rheum Dis. 1961;20:215–20.

Article  PubMed  PubMed Central  Google Scholar 

Brown MA, Kennedy LG, MacGregor AJ, Darke C, Duncan E, Shatford JL, et al. Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA, and the environment. Arthritis Rheum. 1997;40:1823–8.

Article  CAS  PubMed  Google Scholar 

Brewerton DA, Hart FD, Nicholls A, Caffrey M, James DC, Sturrock RD. Ankylosing spondylitis and HL-A 27. Lancet. 1973;1:904–7.

Article  CAS  PubMed  Google Scholar 

Ellinghaus D, Jostins L, Spain SL, Cortes A, Bethune J, Han B, et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat Genet. 2016;48:510–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kopplin LJ, Mount G, Suhler EB. Review for disease of the year: epidemiology of HLA-B27 associated ocular disorderS. Ocul Immunol Inflamm. 2016;24:470–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown MA, Pile KD, Kennedy LG, Calin A, Darke C, Bell J, et al. HLA class I associations of ankylosing spondylitis in the white population in the United Kingdom. Ann Rheum Dis. 1996;55:268–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo F, Zhao Z, Zhang J, Leng J. Comparison of HLA-B*27 subtypes between Chinese patients with ankylosing spondylitis and non-ankylosing spondylitis carriers. J Int Med Res. 2019;47:3171–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang M, Xu M, Pan X, Hu Z, Li Q, Wei Y, et al. Epidemiological comparison of clinical manifestations according to HLA-B*27 carrier status of Chinese ankylosing spondylitis patients. Tissue Antigens. 2013;82:338–43.

Article  CAS  PubMed  Google Scholar 

Glatigny S, Fert I, Blaton MA, Lories RJ, Araujo LM, Chiocchia G, et al. Proinflammatory Th17 cells are expanded and induced by dendritic cells in spondylarthritis-prone HLA-B27-transgenic rats. Arthritis Rheum. 2012;64:110–20.

Article  CAS  PubMed  Google Scholar 

DeLay ML, Turner MJ, Klenk EI, Smith JA, Sowders DP, Colbert RA. HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats. Arthritis Rheum. 2009;60:2633–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Milia AF, Ibba-Manneschi L, Manetti M, Benelli G, Messerini L, Matucci-Cerinic M. HLA-B27 transgenic rat: an animal model mimicking gut and joint involvement in human spondyloarthritides. Ann N Y Acad Sci. 2009;1173:570–4.

Article  ADS  CAS  PubMed  Google Scholar 

Khare SD, Luthra HS, David CS. Spontaneous inflammatory arthritis in HLA-B27 transgenic mice lacking beta 2-microglobulin: a model of human spondyloarthropathies. J Exp Med. 1995;182:1153–8.

Article  CAS  PubMed  Google Scholar 

Stam NJ, Spits H, Ploegh HL. Monoclonal antibodies raised against denatured HLA-B locus heavy chains permit biochemical characterization of certain HLA-C locus products. J Immunol. 1986;137:2299–306.

Article  CAS  PubMed  Google Scholar 

Braem K, Lories RJ. Insights into the pathophysiology of ankylosing spondylitis: contributions from animal models. Joint Bone Spine. 2012;79:243–8.

Article  CAS  PubMed  Google Scholar 

Nakamura A, Boroojeni SF, Haroon N. Aberrant antigen processing and presentation: key pathogenic factors leading to immune activation in Ankylosing spondylitis. Semin Immunopathol. 2021;43:245–53.

Article  CAS  PubMed  Google Scholar 

•• Yang X, Garner LI, Zvyagin I V, Paley MA, Komech EA, Jude KM, et al. Autoimmunity-associated T cell receptors recognize HLA-B*27-bound peptides. Nature. 2022;612: 771–7. (This study identified a subset of pathogenic CD8 TCRs with a shared alpha chain that was expanded in the joints in axSpA and AUU suggesting that pathogenic peptides presented by HLA-B27 may be disease inducing.)

Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet. 2007;39:1329–37.

Article  CAS  PubMed  Google Scholar 

Haroon N, Tsui FW, Uchanska-Ziegler B, Ziegler A, Inman RD. Endoplasmic reticulum aminopeptidase 1 (ERAP1) exhibits functionally significant interaction with HLA-B27 and relates to subtype specificity in ankylosing spondylitis. Ann Rheum Dis. 2012;71:589–95.

Article  CAS  PubMed  Google Scholar 

Tran TM, Hong S, Edwan JH, Colbert RA. ERAP1 reduces accumulation of aberrant and disulfide-linked forms of HLA-B27 on the cell surface. Mol Immunol. 2016;74:10–7. https://doi.org/10.1016/j.molimm.2016.04.002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen L, Ridley A, Hammitzsch A, Al-Mossawi MH, Bunting H, Georgiadis D, et al. Silencing or inhibition of endoplasmic reticulum aminopeptidase 1 (ERAP1) suppresses free heavy chain expression and Th17 responses in ankylosing spondylitis. Ann Rheum Dis. 2016;75:916–23.

Article  CAS  PubMed  Google Scholar 

Zhang Z, Ciccia F, Zeng F, Guggino G, Yee K, Abdullah H, et al. Brief Report: Functional Interaction of Endoplasmic Reticulum Aminopeptidase 2 and HLA-B27 Activates the Unfolded Protein Response. Arthritis Rheumatol. 2017;69:1009–15.

Article  CAS  PubMed  Google Scholar 

Mielants H, Veys EM, Goemaere S, Goethals K, Cuvelier C, De Vos M. Gut inflammation in the spondyloarthropathies: clinical, radiologic, biologic and genetic features in relation to the type of histology. A prospective study J Rheumatol. 1991;18:1542–51.

CAS  PubMed  Google Scholar 

Asquith M, Sternes PR, Costello M-E, Karstens L, Diamond S, Martin TM, et al. HLA alleles associated with risk of ankylosing spondylitis and rheumatoid arthritis influence the gut microbiome. Arthritis Rheumatol. 2019;71:1642–50.

Article  CAS  PubMed  Google Scholar 

Breban M, Tap J, Leboime A, Said-Nahal R, Langella P, Chiocchia G, et al. Faecal microbiota study reveals specific dysbiosis in spondyloarthritis. Ann Rheum Dis. 2017;76:1614–22.

Article  CAS  PubMed  Google Scholar 

Lin P, Bach M, Asquith M, Lee AY, Akileswaran L, Stauffer P, et al. HLA-B27 and human β2-microglobulin affect the gut microbiota of transgenic rats. PLoS ONE. 2014;9:e105684. https://doi.org/10.1371/journal.pone.0105684.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Mousa WK, Chehadeh F, Husband S. Microbial dysbiosis in the gut drives systemic autoimmune diseases. Front Immunol. 2022;13:906258. https://doi.org/10.3389/fimmu.2022.906258.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruutu M, Thomas G, Steck R, Degli-Esposti MA, Zinkernagel MS, Alexander K, et al. beta-glucan triggers spondylarthritis and Crohn’s disease-like ileitis in SKG mice. Arthritis Rheum. 2012;64:2211–22.

Article  CAS  PubMed  Google Scholar 

• Watad A, Rowe H, Russell T, Zhou Q, Anderson LK, Khan A, et al. Normal human enthesis harbours conventional CD4+ and CD8+ T cells with regulatory features and inducible IL-17A and TNF expression. Ann Rheum Dis. 2020;79:1044–1054. (This study shows that conventional CD4+ and CD8+ T cells exist in human axial entheses and have an ability to produce IL-17A and TNF.)

••Cuthbert RJ, Watad A, Fragkakis EM, Dunsmuir R, Loughenbury P, Khan A, et al. Evidence that tissue resident human enthesis γδT-cells can produce IL-17A independently of IL-23R transcript expression. Ann Rheum Dis. 2019;78:1559–65. (This study provides the first evidence of IL-17 producing γδ T cells independent of IL-23 in human axial entheses, which may be the reason for the ineffectiveness of IL-23 monoclonal antibodies in patients with ankylosing spondylitis.)

Cuthbert RJ, Fragkakis EM, Dunsmuir R, Li Z, Coles M, Marzo-Ortega H, et al. Brief report: group 3 innate lymphoid cells in human enthesis. Arthritis Rheumatol. 2017;69:1816–22.

Article  CAS  PubMed  Google Scholar 

Reinhardt A, Yevsa T, Worbs T, Lienenklaus S, Sandrock I, Oberdörfer L, et al. Interleukin-23-dependent γ/δ T cells produce interleukin-17 and accumulate in the enthesis, aortic valve, and ciliary body in mice. Arthritis Rheumatol. 2016;68:2476–86.

Article  CAS  PubMed  Google Scholar 

••. Viladomiu M, Kivolowitz C, Abdulhamid A, Dogan B, Victorio D, Castellanos JG, et al. IgA-coated E. coli enriched in Crohn’s disease spondyloarthritis promote T(H)17-dependent inflammation. Sci Transl Med. 2017; 9:eaaf9655. https://doi.org/10.1126/scitranslmed.aaf9655. (This study found an abundant IgA-coated Escherichia coli (E. coli) in Crohn’s disease (CD)-SpA patients, and the E. coli were similar in genotype and phenotype to an adherent-invasive E. coli (AIEC) pathotype. CD-SpA-derived AIEC induced systemic Th17 immunity and promoted joint inflammation.)

Franssen MJ, van de Putte LB, Gribnau FW. IgA serum levels and disease activity in ankylosing spondylitis: a prospective study. Ann Rheum Dis. 1985;44:766–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salas-Cuestas F, Bautista-Molano W, Bello-Gualtero JM, Arias I, Castillo DM, Chila-Moreno L, et al. Higher levels of secretory IgA are associated with low disease activity index in patients with reactive arthritis and undifferentiated spondyloarthritis. Front Immunol. 2017;8:476. https://doi.org/10.3389/fimmu.2017.00476.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif