The Effect of Rheumatoid Arthritis on Features Associated with Sarcopenia: A Mendelian Randomization Study

Cruz-Jentoft AJ, Bahat G, Bauer J et al (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48(4):601–601. https://doi.org/10.1093/ageing/afz046

Article  PubMed  PubMed Central  Google Scholar 

Bhasin S, Travison TG, Manini TM et al (2020) Sarcopenia definition: the position statements of the sarcopenia definition and outcomes consortium. J Am Geriatr Soc 68(7):1410–1418. https://doi.org/10.1111/jgs.16372

Article  PubMed  Google Scholar 

Yu H, Luo G, Sun T, Tang Q (2022) Causal effects of homocysteine levels on the components of sarcopenia: a two-sample Mendelian randomization study. Front Genet. https://doi.org/10.3389/fgene.2022.1051047

Article  PubMed  PubMed Central  Google Scholar 

Firestein GS (2003) Evolving concepts of rheumatoid arthritis. Nature 423(6937):356–361. https://doi.org/10.1038/nature01661

Article  ADS  CAS  PubMed  Google Scholar 

Dao T, Kirk B, Phu S, Vogrin S, Duque G (2021) Prevalence of sarcopenia and its association with antirheumatic drugs in middle-aged and older adults with rheumatoid arthritis: a systematic review and meta-analysis. Calcif Tissue Int 109(5):475–489. https://doi.org/10.1007/s00223-021-00873-w

Article  CAS  PubMed  Google Scholar 

Santo RCE, Fernandes KZ, Lora PS, Filippin LI, Xavier RM (2018) Prevalence of rheumatoid cachexia in rheumatoid arthritis: a systematic review and meta-analysis: systematic review of RA cachexia prevalence. J Cachexia Sarcopenia Muscle 9(5):816–825. https://doi.org/10.1002/jcsm.12320

Article  PubMed  PubMed Central  Google Scholar 

Vlietstra L, Stebbings S, Meredith-Jones K, Abbott JH, Treharne GJ, Waters DL (2019) Sarcopenia in osteoarthritis and rheumatoid arthritis: the association with self-reported fatigue, physical function and obesity. PLoS ONE 14(6):e0217462. https://doi.org/10.1371/journal.pone.0217462

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee K, Lim CY (2019) Mendelian randomization analysis in observational epidemiology. J Lipid Atheroscler 8(2):67. https://doi.org/10.12997/jla.2019.8.2.67

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elsworth B, Lyon M, Alexander T et al (2020) The MRC IEU OpenGWAS data infrastructure. Published online. https://doi.org/10.1101/2020.08.10.244293

Article  Google Scholar 

Qiu S, Li M, Jin S, Lu H, Hu Y (2021) Rheumatoid arthritis and cardio-cerebrovascular disease: a Mendelian randomization study. Front Genet. https://doi.org/10.3389/fgene.2021.745224

Article  PubMed  PubMed Central  Google Scholar 

Cox N (2018) UK Biobank shares the promise of big data. Nature 562(7726):194–195. https://doi.org/10.1038/d41586-018-06948-3

Article  ADS  CAS  PubMed  Google Scholar 

Pei YF, Liu YZ, Yang XL et al (2020) The genetic architecture of appendicular lean mass characterized by association analysis in the UK Biobank study. Commun Biol. https://doi.org/10.1038/s42003-020-01334-0

Article  PubMed  PubMed Central  Google Scholar 

Hemani G, Zheng J, Elsworth B et al (2018) The MR-base platform supports systematic causal inference across the human phenome. Elife. https://doi.org/10.7554/elife.34408

Article  PubMed  PubMed Central  Google Scholar 

Verbanck M, Chen CY, Neale B, Do R (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 50(5):693–698. https://doi.org/10.1038/s41588-018-0099-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44(2):512–525. https://doi.org/10.1093/ije/dyv080

Article  PubMed  PubMed Central  Google Scholar 

Brion MJA, Shakhbazov K, Visscher PM (2013) Calculating statistical power in Mendelian randomization studies. Int J Epidemiol 42(5):1497–1501. https://doi.org/10.1093/ije/dyt179

Article  PubMed  Google Scholar 

Boehm FJ, Zhou X (2022) Statistical methods for Mendelian randomization in genome-wide association studies: a review. Comput Struct Biotechnol J 20:2338–2351. https://doi.org/10.1016/j.csbj.2022.05.015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burgess S, Thompson SG (2017) Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol 32(5):377–389. https://doi.org/10.1007/s10654-017-0255-x

Article  PubMed  PubMed Central  Google Scholar 

Wiegmann S, Armbrecht G, Borucki D et al (2021) Association between sarcopenia, physical performance and falls in patients with rheumatoid arthritis: a 1-year prospective study. BMC Musculoskelet Disord. https://doi.org/10.1186/s12891-021-04605-x

Article  PubMed  PubMed Central  Google Scholar 

Suginohara T, Kawaguchi M, Michihara S, Fujita N, Han LK, Takahashi R (2022) Ninjin’yoeito suppressed the onset of arthritis, pain, and muscle atrophy in rheumatoid arthritis model mice. Front Pharmacol. https://doi.org/10.3389/fphar.2022.974380

Article  PubMed  PubMed Central  Google Scholar 

Alabarse PVG, Lora PS, Silva JMS et al (2018) Collagen-induced arthritis as an animal model of rheumatoid cachexia: CIA as an animal model of RA. J Cachexia Sarcopenia Muscle 9(3):603–612. https://doi.org/10.1002/jcsm.12280

Article  PubMed  PubMed Central  Google Scholar 

Ono Y, Miyakoshi N, Kasukawa Y et al (2018) Effects of eldecalcitol and ibandronate on secondary osteoporosis and muscle wasting in rats with adjuvant-induced arthritis. Osteoporos Sarcopenia 4(4):128–133. https://doi.org/10.1016/j.afos.2018.11.085

Article  PubMed  PubMed Central  Google Scholar 

Webster JM, Sagmeister MS, Fenton CG et al (2021) Global deletion of 11β-HSD1 prevents muscle wasting associated with glucocorticoid therapy in polyarthritis. Int J Mol Sci 22(15):7828. https://doi.org/10.3390/ijms22157828

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li J, Yi X, Yao Z, Chakkalakal JV, Xing L, Boyce BF (2020) TNF receptor-associated factor 6 mediates TNFα -induced skeletal muscle atrophy in mice during aging. J Bone Miner Res 35(8):1535–1548. https://doi.org/10.1002/jbmr.4021

Article  CAS  PubMed  Google Scholar 

Gómez-SanMiguel AB, Martín AI, Nieto-Bona MP, Fernández-Galaz C, Villanúa MÁ, López-Calderón A (2016) The melanocortin receptor type 3 agonistd-Trp(8)-γMSH decreases inflammation and muscle wasting in arthritic rats: <Scp>d</scp>-Trp(8)- MSH decreases inflammatory cachexia. J Cachexia Sarcopenia Muscle 7(1):79–89. https://doi.org/10.1002/jcsm.12036

Article  PubMed  Google Scholar 

Vial G, Coudy-Gandilhon C, Pinel A et al (2020) Lipid accumulation and mitochondrial abnormalities are associated with fiber atrophy in the skeletal muscle of rats with collagen-induced arthritis. Biochim Biophys Acta Mol Cell Biol Lipids 1865(2):158574. https://doi.org/10.1016/j.bbalip.2019.158574

Article  CAS  PubMed  Google Scholar 

Beaudart C, McCloskey E, Bruyère O et al (2016) Sarcopenia in daily practice: assessment and management. BMC Geriatr. https://doi.org/10.1186/s12877-016-0349-4

Article  PubMed  PubMed Central  Google Scholar 

Tong JJ, Xu SQ, Wang JX et al (2021) Interactive effect of sarcopenia and falls on vertebral osteoporotic fracture in patients with rheumatoid arthritis. Arch Osteoporos. https://doi.org/10.1007/s11657-021-01017-1

Article  PubMed  Google Scholar 

Zhang M, Xu S, Zong H et al (2022) Effect of sarcopenia and poor balance on vertebral spinal osteoporotic fracture in female rheumatoid arthritis. Sci Rep. https://doi.org/10.1038/s41598-022-13339-2

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif