An ASER AI/ML expert panel formative user research study for an interpretable interactive splenic AAST grading graphical user interface prototype

Chahine AH, Gilyard S, Hanna TN, Fan S, Risk B, Johnson JO et al (2021) Management of splenic trauma in contemporary clinical practice: a national trauma data bank study. Acad Radiol 28(Suppl 1):S138–S147. https://doi.org/10.1016/J.ACRA.2020.11.010

Article  PubMed  Google Scholar 

Dreizin D, Munera F (2012) Blunt polytrauma: evaluation with 64-section whole-body CT angiography. Radiographics 32:609–632. https://doi.org/10.1148/RG.323115099

Article  PubMed  Google Scholar 

Dreizin D, Champ K, Dattwyler M, Bodanapally U, Smith EB, Li G, Singh R, Wang Z, Liang Y (2023) Blunt splenic injury in adults: Association between volumetric quantitative CT parameters and intervention. J Trauma Acute Care Surg 94(1):125–132. https://doi.org/10.1097/TA.0000000000003684

Article  PubMed  Google Scholar 

Dreizin D, Yu T, Motley K, Li G, Morrison JJ, Liang Y (2022) Blunt splenic injury: Assessment of follow-up CT utility using quantitative volumetry. Front Radiol 2:941863. https://doi.org/10.3389/fradi.2022.941863

Krausz MM, Hirsh M (2003) Bolus versus continuous fluid resuscitation and splenectomy for treatment of uncontrolled hemorrhagic shock after massive splenic injury. J Trauma 55:62–68. https://doi.org/10.1097/01.TA.0000074110.77122.46

Article  PubMed  Google Scholar 

Kozar RA, Crandall M, Shanmuganathan K, Zarzaur BL, Coburn M, Cribari C et al (2018) Organ injury scaling 2018 update: spleen, liver, and kidney. J Trauma Acute Care Surg 85:1119–1122. https://doi.org/10.1097/TA.0000000000002058

Article  PubMed  Google Scholar 

Requarth JA, D’Agostino RB, Miller PR (2011) Nonoperative management of adult blunt splenic injury with and without splenic artery embolotherapy: a meta-analysis. J Trauma - Inj Infect Crit Care 71:898–903. https://doi.org/10.1097/TA.0B013E318227EA50

Article  Google Scholar 

Bhangu A, Nepogodiev D, Lal N, Bowley DM (2012) Meta-analysis of predictive factors and outcomes for failure of non-operative management of blunt splenic trauma. Injury 43:1337–1346. https://doi.org/10.1016/j.injury.2011.09.010

Article  PubMed  Google Scholar 

Haan JM, Biffl W, Knudson MM, Davis KA, Oka T, Majercik S et al (2004) Splenic embolization revisited: a multicenter review. J Trauma 56:542–547. https://doi.org/10.1097/01.TA.0000114069.73054.45

Article  PubMed  Google Scholar 

Zarzaur BL, Kozar R, Myers JG, Claridge JA, Scalea TM, Neideen TA et al (2015) The splenic injury outcomes trial: an American Association for the Surgery of Trauma multi-institutional study. J Trauma Acute Care Surg 79:335–342. https://doi.org/10.1097/TA.0000000000000782

Article  PubMed  Google Scholar 

Coccolini F, Montori G, Catena F, Kluger Y, Biffl W, Moore EE et al (2017) Splenic trauma: WSES classification and guidelines for adult and pediatric patients. World J Emerg Surg 12:1–26. https://doi.org/10.1186/S13017-017-0151-4

Article  Google Scholar 

Barquist ES, Pizano LR, Feuer W, Pappas PA, McKenney KA, LeBlang SD et al (2004) Inter- and intrarater reliability in computed axial tomographic grading of splenic injury: why so many grading scales? J Trauma 56:334–338. https://doi.org/10.1097/01.TA.0000052364.71392.70

Article  PubMed  Google Scholar 

Clark R, Hird K, Misur P, Ramsay D, Mendelson R (2011) CT grading scales for splenic injury: why can’t we agree? J Med Imaging Radiat Oncol 55:163–169. https://doi.org/10.1111/J.1754-9485.2011.02246.X

Article  PubMed  Google Scholar 

Adams-McGavin RC, Tafur M, Vlachou PA, Wu M, Brassil M, Crivellaro P et al (2023) Interrater agreement of CT grading of blunt splenic injuries: does the AAST grading need to be reimagined? Can Assoc Radiol J. https://doi.org/10.1177/08465371231184425

Article  PubMed  Google Scholar 

Hanna TN, Loehfelm T, Khosa F, Rohatgi S, Johnson JO (2016) Overnight shift work: factors contributing to diagnostic discrepancies. Emerg Radiol 23:41–47. https://doi.org/10.1007/S10140-015-1355-0

Article  PubMed  Google Scholar 

Glover M, Almeida RR, Schaefer PW, Lev MH, Mehan WA (2017) Quantifying the impact of noninterpretive tasks on radiology report turn-around times. J Am Coll Radiol 14:1498–1503. https://doi.org/10.1016/J.JACR.2017.07.023

Article  PubMed  Google Scholar 

Banaste N, Caurier B, Bratan F, Bergerot JF, Thomson V, Millet I (2018) Whole-body CT in patients with multiple traumas: factors leading to missed injury. Radiology 289:374–383. https://doi.org/10.1148/RADIOL.2018180492

Article  PubMed  Google Scholar 

Alexander R, Waite S, Bruno MA, Krupinski EA, Berlin L, Macknik S et al (2022) Mandating limits on workload, duty, and speed in radiology. Radiology 304:274–282. https://doi.org/10.1148/RADIOL.212631/ASSET/IMAGES/LARGE/RADIOL.212631.VA.JPEG

Article  PubMed  Google Scholar 

Agrawal A, Khatri GD, Khurana B, Sodickson AD, Liang Y, Dreizin D (2023) A survey of ASER members on artificial intelligence in emergency radiology: trends, perceptions, and expectations. Emerg Radiol 30:267. https://doi.org/10.1007/S10140-023-02121-0

Article  PubMed  PubMed Central  Google Scholar 

Dreizin D, Staziaki PV, Khatri GD, Beckmann NM, Feng Z, Liang Y et al (2023) Artificial intelligence CAD tools in trauma imaging: a scoping review from the American Society of Emergency Radiology (ASER) AI/ML Expert Panel. Emerg Radiol 30:251–265. https://doi.org/10.1007/S10140-023-02120-1

Article  PubMed  PubMed Central  Google Scholar 

Gomez C, Unberath M, Huang CM (2023) Mitigating knowledge imbalance in AI-advised decision-making through collaborative user involvement. Int J Hum Comput Stud 172:102977. https://doi.org/10.1016/J.IJHCS.2022.102977

Article  Google Scholar 

Chen H, Gomez C, Huang CM, Unberath M (2022) Explainable medical imaging AI needs human-centered design: guidelines and evidence from a systematic review. Npj Digit Med 5:1–15. https://doi.org/10.1038/s41746-022-00699-2

Article  Google Scholar 

Castro DC, Walker I, Glocker B (2020) Causality matters in medical imaging. Nat Commun 11:3673. https://doi.org/10.1038/S41467-020-17478-W

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Leung HKN, Wong PWL (1997) A study of user acceptance tests. Software Qual J 6:137–149. https://doi.org/10.1023/A:1018503800709/METRICS

Article  Google Scholar 

Quandt M, Freitag M (2021) A systematic review of user acceptance in industrial augmented reality. Front Educ (Lausanne) 6:700760. https://doi.org/10.3389/FEDUC.2021.700760/BIBTEX

Article  Google Scholar 

West E, Mutasa S, Zhu Z, Ha R (2019) Global trend in artificial intelligence-based publications in radiology from 2000 to 2018. AJR Am J Roentgenol 213:1204–1206. https://doi.org/10.2214/AJR.19.21346

Article  PubMed  Google Scholar 

Fujita H (2020) AI-based computer-aided diagnosis (AI-CAD): the latest review to read first. Radiol Phys Technol 13:6–19. https://doi.org/10.1007/S12194-019-00552-4

Article  PubMed  Google Scholar 

Chen H, Unberath M, Dreizin D (2023) Toward automated interpretable AAST grading for blunt splenic injury. Emerg Radiol 30:41–50. https://doi.org/10.1007/S10140-022-02099-1

Article  PubMed  Google Scholar 

Cai CJ, Reif E, Hegde N, Hipp J, Kim B, Smilkov D, Wattenberg M, Viegas F, Corrado GS, Stumpe MC, Terry M, (2019) Human-centered tools for coping with imperfect algorithms during medical decision-making. In Proceedings of the 2019 chi conference on human factors in computing systems pp. 1–14

mPower Clinical Analytics for Medical Imaging | Nuance n.d. https://www.nuance.com/healthcare/diagnostics-solutions/radiology-performance-analytics/mpower-clinical-analytics.html (accessed December 20, 2023)

Hillis SL, Obuchowski NA, Berbaum KS (2011) Power estimation for multireader ROC methods: an updated and unified approach. Acad Radiol 18:129–142. https://doi.org/10.1016/J.ACRA.2010.09.007

Article  PubMed  PubMed Central  Google Scholar 

The Mathworks Inc. MATLAB 2022b n.d.

Dreizin D, Chen T, Liang Y, Zhou Y, Paes F, Wang Y, Yuille AL, Roth P, Champ K, Li G, McLenithan A, Morrison JJ (2021Jun) Added value of deep learning-based liver parenchymal CT volumetry for predicting major arterial injury after blunt hepatic trauma: a decision tree analysis. Abdom Radiol (NY) 46(6):2556–2566. https://doi.org/10.1007/s00261-020-02892-x

Article  PubMed  Google Scholar 

Dreizin D, Zhou Y, Fu S, Wang Y, Li G, Champ K, Siegel E, Wang Z, Chen T, Yuille AL (2020) A Multiscale Deep Learning Method for Quantitative Visualization of Traumatic Hemoperitoneum at CT: Assessment of Feasibility and Comparison with Subjective Categorical Estimation. Radiol Artif Intell 2(6):e190220. https://doi.org/10.1148/ryai.2020190220

Dreizin D, Nixon B, Hu J, Albert B, Yan C, Yang G, Chen H, Liang Y, Kim N, Jeudy J, Li G, Smith EB, Unberath M (2022) A pilot study of deep learning-based CT volumetry for traumatic hemothorax. Emerg Radiol 29(6):995–1002. https://doi.org/10.1007/s10140-022-02087-5

Article  PubMed  PubMed Central  Google Scholar 

Dreizin D, Zhou Y, Chen T, Li G, Yuille AL, McLenithan A, Morrison JJ (2020) Deep learning-based quantitative visualization and measurement of extraperitoneal hematoma volumes in patients with pelvic fractures: Potential role in personalized forecasting and decision support. J Trauma Acute Care Surg 88(3):425–433. https://doi.org/10.1097/TA.0000000000002566

Article  PubMed  PubMed Central  Google Scholar 

Zapaishchykova A, Dreizin D, Li Z, Wu JY, Roohi SF, Unberath M (2021) An Interpretable Approach to Automated Severity Scoring in Pelvic Trauma. Med Image Comput Comput Assist Interv 12903:424–433. https://doi.org/10.1007/978-3-030-87199-4_40

Article  PubMed  PubMed Central  Google Scholar 

Dreizin D, Goldmann F, LeBedis C, Boscak A, Dattwyler M, Bodanapally U, Li G, Anderson S, Maier A, Unberath M (2021) An Automated Deep Learning Method for Tile AO/OTA Pelvic Fracture Severity Grading from Trauma whole-Body CT. J Digit Imaging 34(1):53–65. https://doi.org/10.1007/s10278-020-00399-x

Article  PubMed  PubMed Central  Google Scholar 

Sarkar N, Zhang L, Campbell P, Liang Y, Li G, Khedr M, Khetan U, Dreizin D (2023) Pulmonary contusion: automated deep learning-based quantitative visualization. Emerg Radiol 30(4):435–441. https://doi.org/10.1007/s10140-023-02149-2

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif