Therapeutic efficacies of mitochondria-targeted esculetin and metformin in the improvement of age-associated atherosclerosis via regulating AMPK activation

Wang JC, Bennett M. Aging and atherosclerosis. Circ Res. 2012;111(2):245–59.

Article  CAS  PubMed  Google Scholar 

Minamino T, et al. Endothelial cell senescence in human atherosclerosis. Circulation. 2002;105(13):1541–4.

Article  CAS  PubMed  Google Scholar 

Matthews C, et al. Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis. Circ Res. 2006;99(2):156–64.

Article  CAS  PubMed  Google Scholar 

Poch E, et al. Short telomeres protect from diet-induced atherosclerosis in apolipoprotein E-null mice. FASEB J. 2004;18(2):1–16.

Article  Google Scholar 

Honda S, et al. Cellular senescence promotes endothelial activation through epigenetic alteration, and consequently accelerates atherosclerosis. Sci Rep. 2021;11(1):14608.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harman D. Free radical theory of aging. Mutation Research/DNAging. 1992;275(3):257–66.

Article  CAS  Google Scholar 

Giorgi C, et al. Mitochondria and reactive oxygen species in aging and age-related diseases. Int Rev Cell Mol Biol. 2018;340:209–344.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan T, et al. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol. 2019;20:247–60.

Article  CAS  PubMed  Google Scholar 

Madamanchi NR, Runge MS. Mitochondrial dysfunction in atherosclerosis. Circ Res. 2007;100(4):460–73.

Article  CAS  PubMed  Google Scholar 

Wang JY, et al. Triphenylphosphonium (TPP)-based antioxidants: a new perspective on antioxidant design. ChemMedChem. 2020;15(5):404–10.

Article  CAS  PubMed  Google Scholar 

Petrov A, et al. SkQ1 Ophthalmic solution for dry eye treatment: results of a phase 2 safety and efficacy clinical study in the environment and during challenge in the controlled adverse environment model. Adv Ther. 2016;33(1):96–115.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Q-H, Qin S-W, Jiang J-G. Improvement effects of esculetin on the formation and development of atherosclerosis. Biomed Pharmacother. 2022;150:113001.

Article  CAS  PubMed  Google Scholar 

Karnewar S, et al. Mitochondria-targeted esculetin alleviates mitochondrial dysfunction by AMPK-mediated nitric oxide and SIRT3 regulation in endothelial cells: potential implications in atherosclerosis. Sci Rep. 2016;6:24108.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karnewar S, et al. Mitochondria-targeted esculetin mitigates atherosclerosis in the setting of aging via the modulation of SIRT1-mediated vascular cell senescence and mitochondrial function in Apoe−/− mice. Atherosclerosis. 2022;356:28–40.

Article  CAS  PubMed  Google Scholar 

Soukas AA, Hao H, Wu L. Metformin as anti-aging therapy: is it for everyone? Trends Endocrinol Metab. 2019;30(10):745–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karnewar S, et al. 2018 Metformin regulates mitochondrial biogenesis and senescence through AMPK mediated H3K79 methylation relevance in age-associated vascular dysfunction. Biochim Biophys Acta (BBA) - Mol Basis Dis. 1864;4:1115–28.

Google Scholar 

Vasamsetti SB, et al. Metformin inhibits monocyte-to-macrophage differentiation via AMPK-mediated inhibition of STAT3 activation: potential role in atherosclerosis. Diabetes. 2015;64(6):2028–41.

Article  CAS  PubMed  Google Scholar 

Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev. 2012;11(2):230–41.

Article  CAS  PubMed  Google Scholar 

Stancu AL. AMPK activation can delay aging Discoveries (Craiova). 2015;3(4): e53.

PubMed  Google Scholar 

Gopoju R, Panangipalli S, Kotamraju S. Metformin treatment prevents SREBP2-mediated cholesterol uptake and improves lipid homeostasis during oxidative stress-induced atherosclerosis. Free Radic Biol Med. 2018;118:85–97.

Article  CAS  PubMed  Google Scholar 

Gao F, Chen J, Zhu H. A potential strategy for treating atherosclerosis: improving endothelial function via AMP-activated protein kinase. Sci China Life Sci. 2018;61(9):1024–9.

Article  CAS  PubMed  Google Scholar 

Merksamer PI, et al. The sirtuins, oxidative stress and aging: an emerging link. Aging (Albany NY). 2013;5(3):144–50.

Article  CAS  PubMed  Google Scholar 

D’Onofrio N, Servillo L, Balestrieri ML. SIRT1 and SIRT6 signaling pathways in cardiovascular disease protection. Antioxid Redox Signal. 2018;28(8):711–32.

Article  PubMed  PubMed Central  Google Scholar 

Yang Y, et al. SIRT6 protects vascular endothelial cells from angiotensin II-induced apoptosis and oxidative stress by promoting the activation of Nrf2/ARE signaling. Eur J Pharmacol. 2019;859:172516.

Article  CAS  PubMed  Google Scholar 

Kuang J, et al. The role of Sirt6 in obesity and diabetes. Front Physiol. 2018;9:135.

Article  PubMed  PubMed Central  Google Scholar 

Shaikh A, et al. A functional and self-assembling octyl-phosphonium-tagged esculetin as an effective siRNA delivery agent. Chem Commun (Camb). 2021;57(92):12329–32.

Article  CAS  PubMed  Google Scholar 

Hissin PJ, Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem. 1976;74(1):214–26.

Article  CAS  PubMed  Google Scholar 

Mallappa S, et al. Doxorubicin induces prostate cancer drug resistance by upregulation of ABCG4 through GSH depletion and CREB activation: relevance of statins in chemosensitization. Mol Carcinog. 2019;58(7):1118–33.

Article  CAS  PubMed  Google Scholar 

Georgakopoulou EA, et al. Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging (Albany NY). 2013;5(1):37–50.

Article  CAS  PubMed  Google Scholar 

Getz GS, Reardon CA. ApoE knockout and knockin mice: the history of their contribution to the understanding of atherogenesis. J Lipid Res. 2016;57(5):758–66.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodgers JL, et al. Cardiovascular risks associated with gender and aging. J Cardiovasc Dev Dis. 2019;6:2.

Google Scholar 

Jablonski KA, et al. Novel markers to delineate murine M1 and M2 macrophages. PLoS ONE. 2015;10(12):e0145342.

Article  PubMed  PubMed Central  Google Scholar 

Lee SG, et al. Macrophage polarization and acceleration of atherosclerotic plaques in a swine model. PLoS ONE. 2018;13(3):e0193005.

Article  PubMed  PubMed Central  Google Scholar 

Jung T, Bader N, Grune T. Lipofuscin: formation, distribution, and metabolic consequences. Ann N Y Acad Sci. 2007;1119:97–111.

Article  CAS  PubMed  Google Scholar 

Sastre J, Pallardó FV, Viña J. Glutathione, oxidative stress and aging. Age. 1996;19(4):129–39.

Article  CAS  Google Scholar 

Prasad A, et al. Glutathione reverses endothelial dysfunction and improves nitric oxide bioavailability. J Am Coll Cardiol. 1999;34(2):507–14.

Article  CAS  PubMed  Google Scholar 

Grootaert MOJ, et al. SIRT6 protects smooth muscle cells from senescence and reduces atherosclerosis. Circ Res. 2021;128(4):474–91.

Article  CAS  PubMed  Google Scholar 

Li X, et al. SIRT6 in senescence and aging-related cardiovascular diseases. Front Cell Dev Biol. 2021;9:641315.

Article  PubMed  PubMed Central  Google Scholar 

Xu S, et al. SIRT6 protects against endothelial dysfunction and atherosclerosis in mice. Aging (Albany NY). 2016;8(5):1064–82.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif