Cross-Linking Methods of the Silk Protein Hydrogel in Oral and Craniomaxillofacial Tissue Regeneration

Liu M, Liu X, Su Y, Li S, Chen Y, Liu A, et al. Emerging role of mesenchymal stem cell-derived extracellular vesicles in oral and craniomaxillofacial tissue regenerative medicine. Front Bioeng Biotechnol. 2022;10:1054370.

Article  PubMed  PubMed Central  Google Scholar 

Galli M, Yao Y, Giannobile WV, Wang HL. Current and future trends in periodontal tissue engineering and bone regeneration. Plastic Aesthetic Res. 2021;8

Zhang S, Yang Y, Jia S, Chen H, Duan Y, Li X, et al. Exosome-like vesicles derived from Hertwig’s epithelial root sheath cells promote the regeneration of dentin-pulp tissue. Theranostics. 2020;10:5914–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hashemi-Beni B, Khoroushi M, Foroughi MR, Karbasi S, Khademi AA. Tissue engineering: Dentin—pulp complex regeneration approaches (a review). Tissue Cell. 2017;49:552–64.

Article  CAS  PubMed  Google Scholar 

Yu Y, Yu T, Wang X, Liu D. Functional hydrogels and their applications in craniomaxillofacial bone regeneration. Pharmaceutics. 2022;15.

Schmidt AH. Autologous bone graft: Is it still the gold standard? Injury. 2021;52(Suppl 2):S18-s22.

Article  PubMed  Google Scholar 

Li Y, Zhang J, Wang C, Jiang Z, Lai K, Wang Y, et al. Porous composite hydrogels with improved MSC survival for robust epithelial sealing around implants and M2 macrophage polarization. Acta Biomater. 2023;157:108–23.

Article  CAS  PubMed  Google Scholar 

Mao Y, Zhang Y, Wang Y, Zhou T, Ma B, Zhou P. A multifunctional nanocomposite hydrogel with controllable release behavior enhances bone regeneration. Regenerat Biomater. 2023;10:rbad046.

Article  CAS  Google Scholar 

Atila D, Keskin D, Lee YL, Lin FH, Hasirci V, Tezcaner A. Injectable methacrylated gelatin/thiolated pectin hydrogels carrying melatonin/tideglusib-loaded core/shell PMMA/silk fibroin electrospun fibers for vital pulp regeneration. Colloids Surf B. 2023;222: 113078.

Article  CAS  Google Scholar 

Wu S, Zhou X, Ai Y. Pro-angiogenic photo-crosslinked silk fibroin hydrogel: a potential candidate for repairing alveolar bone defects. J Appl Oral Sci Revista FOB. 2023;31: e20230158.

Article  PubMed  Google Scholar 

Huang M, Huang Y, Liu H, Tang Z, Chen Y, Huang Z, et al. Hydrogels for the treatment of oral and maxillofacial diseases: current research, challenges, and future directions. Biomater Sci. 2022.

Ealla KKR, Veeraraghavan VP, Ravula NR, Durga CS, Ramani P, Sahu V, et al. Silk hydrogel for tissue engineering: a review. J Contemp Dent Pract. 2022;23:467–77.

Article  PubMed  Google Scholar 

Jhon MS, Andrade JD. Water and hydrogels. J Biomed Mater Res. 1973;7:509–22.

Article  CAS  PubMed  Google Scholar 

Buwalda SJ, Boere KWM, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE. Hydrogels in a historical perspective: from simple networks to smart materials. J Control Release. 2014;190:254–73.

Article  CAS  PubMed  Google Scholar 

Alipour M, Ghorbani M, Johari Khatoonabad M, Aghazadeh M. A novel injectable hydrogel containing polyetheretherketone for bone regeneration in the craniofacial region. Sci Rep. 2023;13:864.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun W, Gregory DA, Tomeh MA, Zhao X. Silk fibroin as a functional biomaterial for tissue engineering. IJMS. 2021;22.

Nih LR, Gojgini S, Carmichael ST, Segura T. Dual-function injectable angiogenic biomaterial for the repair of brain tissue following stroke. Nat Mater. 2018;17:642–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fan L, Liu C, Chen X, Zou Y, Zhou Z, Lin C, et al. Directing induced pluripotent stem cell derived neural stem cell fate with a three-dimensional biomimetic hydrogel for spinal cord injury repair. ACS Appl Mater Interfaces. 2018;10:17742–55.

Article  CAS  PubMed  Google Scholar 

Xie X, Li Z, Yang X, Yang B, Zong Z, Wang X, et al. Biomimetic nanofibrillar hydrogel with cell-adaptable network for enhancing cellular mechanotransduction, metabolic energetics, and bone regeneration. J Am Chem Soc. 2023;145:15218–29.

Article  CAS  PubMed  Google Scholar 

Noohi P, Abdekhodaie MJ, Saadatmand M, Nekoofar MH, Dummer PMH. The development of a dental light curable PRFe-loaded hydrogel as a potential scaffold for pulp-dentine complex regeneration: an in vitro study. Int Endod J. 2023;56:447–64.

Article  PubMed  Google Scholar 

Kawamoto M, Jouraku A, Toyoda A, Yokoi K, Minakuchi Y, Katsuma S, et al. High-quality genome assembly of the silkworm, Bombyx mori. Insect Biochem Mol Biol. 2019;107:53–62.

Article  CAS  PubMed  Google Scholar 

Yang M. Silk-based biomaterials. Microsc Res Tech. 2017;80:321–30.

Article  PubMed  Google Scholar 

Zheng H, Zuo B. Functional silk fibroin hydrogels: preparation, properties and applications. J Mater Chem B. 2021;9:1238–58.

Article  CAS  PubMed  Google Scholar 

Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S. Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J Biol Chem. 2000;275:40517–28.

Article  CAS  PubMed  Google Scholar 

Lotz B, Colonna CF. The chemical structure and the crystalline structures of Bombyx mori silk fibroin. Biochimie. 1979;61:205–14.

Article  CAS  PubMed  Google Scholar 

Mitraki A, Van Raaij MJ. Folding of beta-structured fibrous proteins and self-assembling peptides. Methods Mol Biol (Clifton, NJ). 2005;300:125–40.

CAS  Google Scholar 

Marsh RE, Corey RB, Pauling L. An investigation of the structure of silk fibroin. Biochem Biophys Acta. 1955;16:1–34.

Article  CAS  PubMed  Google Scholar 

Qi Y, Wang H, Wei K, Yang Y, Zheng RY, Kim IS, et al. A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. Int J Mol Sci. 2017;18.

Ribeiro M, Moraes MAD, Beppu MM, Monteiro FJ. The role of dialysis and freezing on structural conformation, thermal properties and morphology of silk fibroin hydrogels. Biomatter. 2014;4:e28536-e.

Article  Google Scholar 

Zhao Y, Zhu ZS, Guan J, Wu SJ. Processing, mechanical properties and bio-applications of silk fibroin-based high-strength hydrogels. Acta Biomater. 2021;125:57–71.

Article  CAS  PubMed  Google Scholar 

Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc. 2011;6:1612–31.

Article  CAS  PubMed  Google Scholar 

Farokhi M, Aleemardani M, Solouk A, Mirzadeh H, Teuschl AH, Redl H. Crosslinking strategies for silk fibroin hydrogels: promising biomedical materials. Biomed Mater. 2021;16: 022004.

Article  CAS  PubMed  Google Scholar 

Mu X, Sahoo JK, Cebe P, Kaplan DL. Photo-crosslinked silk fibroin for 3D printing. Polymers. 2020;12.

Kim UJ, Park J, Kim HJ, Wada M, Kaplan DL. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials. 2005;26:2775–85.

Article  CAS  PubMed  Google Scholar 

Nguyen AT, Huang QL, Yang Z, Lin N, Xu G, Liu XY. Crystal networks in silk fibrous materials: from hierarchical structure to ultra performance. Small. 2015;11:1039–54.

Article  CAS  PubMed  Google Scholar 

Bellissent-Funel M-C, Hassanali A, Havenith M, Henchman R, Pohl P, Sterpone F, et al. Water determines the structure and dynamics of proteins. Chem Rev. 2016;116:7673–97.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jaya Prakash N, Sarkar SS, Kandasubramanian B. Emerging strategies in stimuli-responsive silk architectures. Macromol Biosci. 2023;e2200573.

Matsumoto A, Chen J, Collette AL, Kim UJ, Altman GH, Cebe P, et al. Mechanisms of silk fibroin sol-gel transitions. J Phys Chem B. 2006;110:21630–8.

Article  CAS  PubMed  Google Scholar 

Pham DT, Phewchan P, Navesit K, Chokamonsirikun A, Khemwong T, Tiyaboonchai W. Development of metronidazole-loaded in situ thermosensitive hydrogel for periodontitis treatment. Turk J Pharm Sci. 2021;18:510–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan Y, Cheng B, Chen K, Cui W, Qi J, Li X, et al. Enhanced osteogenesis of bone marrow-derived mesenchymal stem cells by a functionalized silk fibroin hydrogel for bone defect repair. Adv Healthc Mater. 2019;8: e1801043.

Article  PubMed  Google Scholar 

Wu J, Zheng K, Huang X, Liu J, Liu H, Boccaccini AR, et al. Thermally triggered injectable chitosan/silk fibroin/bioactive glass nanoparticle hydrogels for in-situ bone formation in rat calvarial bone defects. Acta Biomater. 2019;91:60–71.

Article  CAS  PubMed  Google Scholar 

Kaewprasit K, Kobayashi T. Alcohol-triggered silk fibroin hydrogels having random coil and β-turn structures enhanced for cytocompatible cell response. J Appl Polymer Sci. 2019;137:48731.

Article  Google Scholar 

Yucel T, Cebe P, Kaplan DL. Vortex-induced injectable silk fibroin hydrogels. Biophys J. 2009;97:2044–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei J, Sun XQ, Hou BX. Evaluatio

留言 (0)

沒有登入
gif