Metabolic reprogramming in the tumor microenvironment of liver cancer

Satriano L, Lewinska M, Rodrigues PM, Banales JM, Andersen JB. Metabolic rearrangements in primary liver cancers: cause and consequences. Nat Rev Gastroenterol Hepatol. 2019;16:748–66. https://doi.org/10.1038/s41575-019-0217-8.

Article  CAS  PubMed  Google Scholar 

Vogel A, Meyer T, Sapisochin G, Salem R, Saborowski A. Hepatocellular carcinoma. Lancet. 2022;400:1345–62. https://doi.org/10.1016/S0140-6736(22)01200-4.

Article  CAS  PubMed  Google Scholar 

Oh D-Y, et al. Durvalumab plus gemcitabine and cisplatin in advanced biliary tract cancer. NEJM Evidence. 2022;1:EVIDoa2200015. https://doi.org/10.1056/EVIDoa2200015.

Article  Google Scholar 

Kelley RK, et al. Pembrolizumab in combination with gemcitabine and cisplatin compared with gemcitabine and cisplatin alone for patients with advanced biliary tract cancer (KEYNOTE-966): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2023;401:1853–65. https://doi.org/10.1016/S0140-6736(23)00727-4.

Article  PubMed  Google Scholar 

Schwabe RF, Greten TF. Gut microbiome in HCC: mechanisms, diagnosis and therapy. J Hepatol. 2020;72:230–8. https://doi.org/10.1016/j.jhep.2019.08.016.

Article  CAS  PubMed  Google Scholar 

Hung MH, et al. Tumor methionine metabolism drives T-cell exhaustion in hepatocellular carcinoma. Nat Commun. 2021;12:1455. https://doi.org/10.1038/s41467-021-21804-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miallot R, Galland F, Millet V, Blay JY, Naquet P. Metabolic landscapes in sarcomas. J Hematol Oncol. 2021;14:114. https://doi.org/10.1186/s13045-021-01125-y.

Article  PubMed  PubMed Central  Google Scholar 

Schmidt DR, et al. Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J Clin. 2021;71:333–58. https://doi.org/10.3322/caac.21670.

Article  PubMed  PubMed Central  Google Scholar 

Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33. https://doi.org/10.1126/science.1160809.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xia L, et al. The cancer metabolic reprogramming and immune response. Mol Cancer. 2021;20:28. https://doi.org/10.1186/s12943-021-01316-8.

Article  PubMed  PubMed Central  Google Scholar 

Sonveaux P, et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest. 2008;118:3930–42. https://doi.org/10.1172/JCI36843.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pavlides S, et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle. 2009;8:3984–4001. https://doi.org/10.4161/cc.8.23.10238.

Article  CAS  PubMed  Google Scholar 

Locasale JW, et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet. 2011;43:869–74. https://doi.org/10.1038/ng.890.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schwenck J, et al. Advances in PET imaging of cancer. Nat Rev Cancer. 2023;23:474–90. https://doi.org/10.1038/s41568-023-00576-4.

Article  CAS  PubMed  Google Scholar 

Boroughs LK, DeBerardinis RJ. Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol. 2015;17:351–9. https://doi.org/10.1038/ncb3124.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang CH, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 2015;162:1229–41. https://doi.org/10.1016/j.cell.2015.08.016.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Munn DH, Mellor AL. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest. 2007;117:1147–54. https://doi.org/10.1172/JCI31178.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leone RD, Powell JD. Metabolism of immune cells in cancer. Nat Rev Cancer. 2020;20:516–31. https://doi.org/10.1038/s41568-020-0273-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li X, et al. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat Rev Clin Oncol. 2019;16:425–41. https://doi.org/10.1038/s41571-019-0203-7.

Article  CAS  PubMed  Google Scholar 

Wang T, et al. Inosine is an alternative carbon source for CD8(+)-T-cell function under glucose restriction. Nat Metab. 2020;2:635–47. https://doi.org/10.1038/s42255-020-0219-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu L, et al. Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1alpha-dependent. Proc Natl Acad Sci U S A. 2016;113:1564–9. https://doi.org/10.1073/pnas.1518000113.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miller A, et al. Exploring metabolic configurations of single cells within complex tissue microenvironments. Cell Metab. 2017;26:788–800. https://doi.org/10.1016/j.cmet.2017.08.014.

Article  CAS  PubMed  Google Scholar 

Hepatocellular carcinoma. Nat Rev Dis Primers 7, 7, https://doi.org/10.1038/s41572-021-00245-6 (2021).

Bidkhori G, et al. Metabolic network-based stratification of hepatocellular carcinoma reveals three distinct tumor subtypes. Proc Natl Acad Sci U S A. 2018;115:E11874–83. https://doi.org/10.1073/pnas.1807305115.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Calderaro J, Ziol M, Paradis V, Zucman-Rossi J. Molecular and histological correlations in liver cancer. J Hepatol. 2019;71:616–30. https://doi.org/10.1016/j.jhep.2019.06.001.

Article  CAS  PubMed  Google Scholar 

Xing X, et al. Integrated omics landscape of hepatocellular carcinoma suggests proteomic subtypes for precision therapy. Cell Rep Med. 2023;4: 101315. https://doi.org/10.1016/j.xcrm.2023.101315.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng M, et al. Proteogenomic characterization of cholangiocarcinoma. Hepatology. 2023;77:411–29. https://doi.org/10.1002/hep.32624.

Article  CAS  PubMed  Google Scholar 

Murai H, et al. Multiomics identifies the link between intratumor steatosis and the exhausted tumor immune microenvironment in hepatocellular carcinoma. Hepatology. 2023;77:77–91. https://doi.org/10.1002/hep.32573.

Article  CAS  PubMed  Google Scholar 

Dong L, et al. Proteogenomic characterization identifies clinically relevant subgroups of intrahepatic cholangiocarcinoma. Cancer Cell. 2022;40:70–87. https://doi.org/10.1016/j.ccell.2021.12.006.

Article  CAS  PubMed  Google Scholar 

Gao Q, et al. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma. Cell. 2019;179:561–77. https://doi.org/10.1016/j.cell.2019.08.052.

Article  CAS  PubMed  Google Scholar 

Nwosu ZC, et al. Identification of the consistently altered metabolic targets in human hepatocellular carcinoma. Cell Mol Gastroenterol Hepatol. 2017;4:303–23. https://doi.org/10.1016/j.jcmgh.2017.05.004.

Article  PubMed  PubMed Central  Google Scholar 

Ji S, et al. Pharmaco-proteogenomic characterization of liver cancer organoids for precision oncology. Sci Transl Med. 2023;15:eadg3358. https://doi.org/10.1126/scitranslmed.adg3358.

Article  CAS  PubMed  Google Scholar 

Yang HC, Stern A, Chiu DT. G6PD: a hub for metabolic reprogramming and redox signaling in cancer. Biomed J. 2021;44:285–92. https://doi.org/10.1016/j.bj.2020.08.001.

Article  CAS  PubMed  Google Scholar 

Hong X, et al. PTEN antagonises Tcl1/hnRNPK-mediated G6PD pre-mRNA splicing which contributes to hepatocarcinogenesis. Gut. 2014;63:1635–47. https://doi.org/10.1136/gutjnl-2013-305302.

Article  CAS  PubMed  Google Scholar 

Gao LP, et al. Ineffective GSH regeneration enhances G6PD-knockdown Hep G2 cell sensitivity to diamide-induced oxidative damage. Free Radic Biol Med. 2009;47:529–35.

留言 (0)

沒有登入
gif