Label-free quantitative proteomics in serum reveals candidate biomarkers associated with low bone mineral density in Mexican postmenopausal women

Reginster JY, Burlet N. Osteoporosis: a still increasing prevalence. Bone. 2006;38(2 Suppl 1):4–9. https://doi.org/10.1016/J.BONE.2005.11.024.

Article  Google Scholar 

Gossiel F, Altaher H, Reid DM, et al. Bone turnover markers after the menopause: T-score approach. Bone. 2018;111:44–8. https://doi.org/10.1016/J.BONE.2018.03.016.

Article  PubMed  Google Scholar 

Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17(12):1726–33. https://doi.org/10.1007/S00198-006-0172-4.

Article  CAS  PubMed  Google Scholar 

Becker DJ, Kilgore ML, Morrisey MA. The societal burden of osteoporosis. Curr Rheumatol Rep. 2010;12(3):186–91. https://doi.org/10.1007/S11926-010-0097-Y.

Article  PubMed  Google Scholar 

Carlos F, Clark P, Galindo-Suárez RM, Chico-Barba LG. Health care costs of osteopenia, osteoporosis, and fragility fractures in Mexico. Arch Osteoporos. 2013;8(1):125. https://doi.org/10.1007/S11657-013-0125-4.

Aziziyeh R, Amin M, Habib M, et al. A scorecard for osteoporosis in four Latin American countries: Brazil, Mexico, Colombia, and Argentina. Arch Osteoporos. 2019;14(1):69. https://doi.org/10.1007/S11657-019-0622-1.

Albergaria BH, Chalem M, Clark P, Messina OD, Pereira RMR, Vidal LF. Consensus statement: osteoporosis prevention and treatment in Latin America—current structure and future directions. Arch Osteoporos. 2018;13(1):90. https://doi.org/10.1007/S11657-018-0505-X.

Choksi P, Jepsen KJ, Clines GA. The challenges of diagnosing osteoporosis and the limitations of currently available tools. Clin Diabetes Endocrinol. 2018;4(1):12. https://doi.org/10.1186/S40842-018-0062-7.

Zhang AH, Sun H, Yan GL, Han Y, Wang XJ. Serum proteomics in biomedical research: a systematic review. Appl Biochem Biotechnol. 2013;170(4):774–86. https://doi.org/10.1007/S12010-013-0238-7.

Article  CAS  PubMed  Google Scholar 

Migliorini F, Maffulli N, Spiezia F, Tingart M, Maria PG, Riccardo G. Biomarkers as therapy monitoring for postmenopausal osteoporosis: a systematic review. J Orthop Surg Res. 2021;16(1):318. https://doi.org/10.1186/S13018-021-02474-7.

Szulc P, Delmas PD. Biochemical markers of bone turnover: potential use in the investigation and management of postmenopausal osteoporosis. Osteoporos Int. 2008;19(12):1683–704. https://doi.org/10.1007/S00198-008-0660-9.

Article  CAS  PubMed  Google Scholar 

Deutsch EW, Omenn GS, Sun Z, et al. Advances and utility of the human plasma proteome. J Proteome Res. 2021;20(12):5241–63. https://doi.org/10.1021/ACS.JPROTEOME.1C00657.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Greco V, Piras C, Pieroni L, Urbani A. Direct assessment of plasma/serum sample quality for proteomics biomarker investigation. Methods Mol Biol. 2017;1619:3–21. https://doi.org/10.1007/978-1-4939-7057-5_1.

Article  CAS  PubMed  Google Scholar 

Deng FY, Liu YZ, Li LM, et al. Proteomic analysis of circulating monocytes in Chinese premenopausal females with extremely discordant bone mineral density. Proteomics. 2008;8(20):4259–72. https://doi.org/10.1002/PMIC.200700480.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lv M, Cui C, Chen P, Li Z. Identification of osteoporosis markers through bioinformatic functional analysis of serum proteome. Medicine. 2020;99(39):e22172. https://doi.org/10.1097/MD.0000000000022172.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang D, Wang Y, Lv J, et al. Proteomic profiling analysis of postmenopausal osteoporosis and osteopenia identifies potential proteins associated with low bone mineral density. PeerJ. 2020;8:e9009. https://doi.org/10.7717/PEERJ.9009/SUPP-8.

Zhang Ll, Li Cw, Liu K, et al. Discovery and identification of serum succinyl-proteome for postmenopausal women with osteoporosis and osteopenia. Orthop Surg. 2019;11(5):784–93. https://doi.org/10.1111/OS.12519.

Article  PubMed  PubMed Central  Google Scholar 

Hlaing TT, Compston JE. Biochemical markers of bone turnover - uses and limitations. Ann Clin Biochem. 2014;51(Pt 2):189–202. https://doi.org/10.1177/0004563213515190.

Article  PubMed  Google Scholar 

Martínez-Aguilar MM, Aparicio-Bautista DI, Ramírez-Salazar EG, et al. Serum proteomic analysis reveals vitamin D-binding protein (VDBP) as a potential biomarker for low bone mineral density in Mexican postmenopausal women. Nutrients. 2019;11(12):2853. https://doi.org/10.3390/NU11122853.

Denova-Gutiérrez E, Flores YN, Gallegos-Carrillo K, et al. Health workers cohort study: methods and study design. Salud Publica Mex. 2016;58(6):708–16. https://doi.org/10.21149/SPM.V58I6.8299.

Article  PubMed  Google Scholar 

Kanis JA, Glüer CC. An update on the diagnosis and assessment of osteoporosis with densitometry. Committee of Scientific Advisors, International Osteoporosis Foundation. Osteoporos Int. 2000;11(3):192–202. https://doi.org/10.1007/S001980050281.

Article  CAS  PubMed  Google Scholar 

Kanis JA, Kanis JA. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int. 1994;4(6):368–81. https://doi.org/10.1007/BF01622200.

Article  CAS  PubMed  Google Scholar 

Ortega-Lozano AJ, Jiménez-Uribe AP, Aranda-Rivera AK, et al. Expression profiles of kidney mitochondrial proteome during the progression of the unilateral ureteral obstruction: focus on energy metabolism adaptions. Metabolites. 2022;12(10):936. https://doi.org/10.3390/METABO12100936.

Rios-Castro E, Souza GHMF, Delgadillo-Alvarez DM, et al. Quantitative proteomic analysis of MARC-145 cells infected with a Mexican porcine reproductive and respiratory syndrome virus strain using a label-free based DIA approach. J Am Soc Mass Spectrom. 2020;31(6):1302–12. https://doi.org/10.1021/JASMS.0C00134.

Article  CAS  PubMed  Google Scholar 

Li GZ, Vissers JPC, Silva JC, Golick D, Gorenstein MV, Geromanos SJ. Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics. 2009;9(6):1696–719. https://doi.org/10.1002/PMIC.200800564.

Article  CAS  PubMed  Google Scholar 

Käll L, Storey JD, MacCoss MJ, Noble WS. Assigning significance to peptides identified by tandem mass spectrometry using decoy databases. J Proteome Res. 2008;7(1):29–34. https://doi.org/10.1021/PR700600N.

Article  PubMed  Google Scholar 

Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7. https://doi.org/10.1089/OMI.2011.0118.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-Ansari MM, Aleidi SM, Masood A, et al. Proteomics profiling of osteoporosis and osteopenia patients and associated network analysis. Int J Mol Sci. 2022;23(17):10200. https://doi.org/10.3390/IJMS231710200.

Huo C, Li Y, Qiao Z, et al. Comparative proteomics analysis of microvesicles in human serum for the evaluation of osteoporosis. Electrophoresis. 2019;40(14):1839–47. https://doi.org/10.1002/ELPS.201900130.

Article  CAS  PubMed  Google Scholar 

Nielson CM, Wiedrick J, Shen J, et al. Identification of hip BMD loss and fracture risk markers through population-based serum proteomics. J Bone Miner Res. 2017;32(7):1559–67. https://doi.org/10.1002/JBMR.3125.

Article  CAS  PubMed  Google Scholar 

Chen M, Li Y, Lv H, Yin P, Zhang L, Tang P. Quantitative proteomics and reverse engineer analysis identified plasma exosome derived protein markers related to osteoporosis. J Proteomics. 2020;228:103940. https://doi.org/10.1016/J.JPROT.2020.103940.

Cawthon PM, Ewing SK, McCulloch CE, et al. Loss of hip BMD in older men: the osteoporotic fractures in men (MrOS) study. J Bone Miner Res. 2009;24(10):1728. https://doi.org/10.1359/JBMR.090419.

Article  PubMed  PubMed Central  Google Scholar 

Adebanjo OA, Biswas G, Moonga BS, et al. Novel biochemical and functional insights into nuclear Ca(2+) transport through IP(3)Rs and RyRs in osteoblasts. Am J Physiol Renal Physiol. 2000;278(5):F784-91. https://doi.org/10.1152/AJPRENAL.2000.278.5.F784.

Wei H, Bi Y, Wang Y, et al. Serum bone remodeling parameters and transcriptome profiling reveal abnormal bone metabolism associated with keel bone fractures in laying hens. Poult Sci. 2023;102(4):102438. https://doi.org/10.1016/J.PSJ.2022.102438.

Robinson LJ, Blair HC, Barnett JB, Zaidi M, Huang CLH. Regulation of bone turnover by calcium-regulated calcium channels. Ann N Y Acad Sci. 2010;1192:351–7. https://doi.org/10.1111/J.1749-6632.2009.05219.X.

Article  CAS  PubMed  Google Scholar 

Tao X, Liu L, Yang X, et al. Clinical characteristics and pathogenic gene identification in Chinese patients with Paget’s disease of bone. Front Endocrinol (Lausanne). 2022;13:850462. https://doi.org/10.3389/FENDO.2022.850462.

Tariq E, Mirza L. Early osteoporosis in RYR1-related central core disease. J Endocr Soc. 2021;5(Suppl 1):A191. https://doi.org/10.1210/JENDSO/BVAB048.387.

Article  PubMed Central  Google Scholar 

Chen ZH, Wu JJ, Guo DY, et al. Physiological functions of podosomes: from structure and function to therapy implications in osteoclast biology of bone resorption. Ageing Res Rev. 2023;85:101842. https://doi.org/10.1016/J.ARR.2023.101842.

Chellaiah M, Kizer N, Silva M, Alvarez U, Kwiatkowski D, Hruska KA. Gelsolin deficiency blocks podosome assembly and produces increased bone mass and strength. J Cell Biol. 2000;148(4):665–78. https://doi.org/10.1083/JCB.148.4.665.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang WY, Ge B, Shi J, et al. Plasma gelsolin is associated with hip BMD in Chinese postmenopausal women. PLoS One. 2018;13(5):e0197732. https://doi.org/10.1371/JOURNAL.PONE.0197732.

Silacci P, Mazzolai L, Gauci C, Stergiopulos N, Yin HL, Hayoz D. Gelsolin superfamily proteins: key regulators of cellular functions. Cell Mol Life Sci. 2004;61(19–20):2614–23. https://doi.org/10.1007/S00018-004-4225-6.

Article  CAS  PubMed  Google Scholar 

Saltel F, Chabadel A, Bonnelye E, Jurdic P. Actin cytoskeletal organisation in osteoclasts: a model to decipher transmigration and matrix degradation. Eur J Cell Biol. 2008;87(8–9):459–68. https://doi.org/10.1016/J.EJCB.2008.01.001.

Article  CAS  PubMed  Google Scholar 

Toroian D, Price PA. The essential role of fetuin in the serum-induced calcification of collagen. Calcif Tissue Int. 2008;82(2):116–26. https://doi.org/10.1007/S00223-007-9085-2.

Article  CAS  PubMed  Google Scholar 

Özkan E, Özkan H, Bilgiç S, et al. Serum fetuin-A levels in postmenopausal women with osteoporosis. Turk J Med Sci. 2014;44(6):985–8. https://doi.org/10.3906/SAG-1308-28.

Article  PubMed  Google Scholar 

Schäfer C, Heiss A, Schwarz A, et al. The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J Clin Invest. 2003;112(3):357–66. https://doi.org/10.1172/JCI17202.

留言 (0)

沒有登入
gif