Synergistic inhibitory actions of resveratrol, epigallocatechin-3-gallate, and diallyl trisulfide against skin cancer cell line A431 through mitochondrial caspase dependent pathway: a combinational drug approach

Elder DE. Skin cancer. Melanoma and other specific nonmelanoma skin cancers. Cancer. 1995;75(1):245–56.

Article  PubMed  CAS  Google Scholar 

Mathur P, Sathishkumar K, Chaturvedi M, Das P, Sudarshan KL, Santhappan S, Nallasamy V, John A, Narasimhan S, Roselind FS, ICMR-NCDIR-NCRP Investigator Group. Cancer statistics, 2020: report from National Cancer Registry Programme. India JCO Glob Oncol. 2020;6:1063–75. https://doi.org/10.1200/GO.20.00122.

Article  PubMed  Google Scholar 

Singh G, Wong PW, Pecoriello J, Lederhandler M, Feng H, Lee N, Kim RH. Characterizing index keratinocytic carcinomas in commercially insured adults younger than age 50 years in the United States. J Am Acad Dermatol. 2020;83(5):1458–60. https://doi.org/10.1016/j.jaad.2020.02.074.

Article  PubMed  Google Scholar 

Deo SV, Hazarika S, Shukla NK, Kumar S, Kar M, Samaiya A. Surgical management of skin cancers: experience from a regional cancer centre in North India. Indian J Cancer. 2005;42(3):145–50. https://doi.org/10.4103/0019-509x.17059.

Article  PubMed  CAS  Google Scholar 

Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta. 2013;1830(6):3670–95. https://doi.org/10.1016/j.bbagen.2013.02.008.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Heinrich MBJ, Gibbons S, Williamson EM. Fundamentals of pharmacognosy and phytotherapy. 1st ed. Edinburgh: Churchill Livingstone; 2004.

Google Scholar 

Dash B, Junius M (1987) The drugs. In: A handbook of ayurveda. Concept Publishing Company, New Delhi

Schmidt B, Passos CL, Ferreira C, da Silva JL, Fialho E. Synergistic effect of curcumin, piperine and resveratrol in MCF-7 and MDAMB-231 breast cancer cells. Biomed Res. 2020;31(5):113–8.

CAS  Google Scholar 

Verma SP, Salamone E, Goldin B. Curcumin and genistein, plant natural products, show synergistic inhibitory effects on the growth of human breast cancer MCF-7 cells induced by estrogenic pesticides. Biochem Biophys Res Commun. 1997;233(3):692–6. https://doi.org/10.1006/bbrc.1997.6527.

Article  PubMed  CAS  Google Scholar 

James A, Akash K, Sharma A, Bhattacharyya S, Sriamornsak P, Nagraik R, Kumar D. Himalayan flora: targeting various molecular pathways in lung cancer. Med Oncol. 2023;40(11):314.

Article  PubMed  Google Scholar 

Singh M, Kumar R, Sharma S, Kumar L, Kumar S, Gupta G, Kumar D. Hedychium spicatum: a comprehensive insight into its ethnobotany, phytochemistry, pharmacological and therapeutic attributes. S Afr J Bot. 2023;161:638–47.

Article  CAS  Google Scholar 

Ndiaye M, Philippe C, Mukhtar H, Ahmad N. The grape antioxidant resveratrol for skin disorders: promise, prospects, and challenges. Arch Biochem Biophys. 2011;508:164–70. https://doi.org/10.1016/j.abb.2010.12.030.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Niles RM, McFarland M, Weimer MB, Redkar A, Fu YM, Meadows GG. Resveratrol is a potent inducer of apoptosis in human melanoma cells. Cancer Lett. 2003;190:157–63.

Article  PubMed  CAS  Google Scholar 

Howells LM, Moiseeva EP, Neal CP, Foreman BE, Andreadi CK, Sun YY, Hudson EA, Manson MM. Predicting the physiological relevance of in vitro cancer preventive activities of phytochemicals. Acta Pharmacol Sin. 2007;28(9):1274–304. https://doi.org/10.1111/j.1745-7254.2007.00690.

Article  PubMed  CAS  Google Scholar 

Mertens-Talcott SU, Percival SS. Ellagic acid and quercetin interact synergistically with resveratrol in the induction of apoptosis and cause transient cell cycle arrest in human leukemia cells. Cancer Lett. 2005;218:141–51.

Article  PubMed  CAS  Google Scholar 

Awad AB, Burr AT, Fink CS. Effect of resveratrol and betasitosterol in combination on reactive oxygen species and prostaglandin release by PC-3 cells. Prostag Leukotr Ess. 2005;72:219–26.

Article  CAS  Google Scholar 

Ombra MN, Paliogiannis P, Stucci LS, Colombino M, Casula M, Sini MC, Manca A, Palomba G, Stanganelli I, Mandalà M, Gandini S, Lissia A, Doneddu V, Cossu A, Palmieri G, Italian Melanoma Intergroup (IMI). Dietary compounds and cutaneous malignant melanoma: recent advances from a biological perspective. Nutr Metab. 2019;16:33. https://doi.org/10.1186/s12986-019-0365-4.

Article  Google Scholar 

Khafif A, Schantz SP, Chou TC, Edelstein D, Sacks PG. Quantitation of chemopreventive synergism between (-)- epigallocatechin-3-gallate and curcumin in normal, premalignant and malignant human oral epithelial cells. Carcinogenesis. 1998;19:419–24.

Article  PubMed  CAS  Google Scholar 

Munchberg U, Anwar A, Mecklenburg S, Jacob C. Polysulfides as biologically active ingredients of garlic. Org Biomol Chem. 2007;5:1505–18.

Article  PubMed  Google Scholar 

Cerella C, Dicato M, Jacob C, Diederich M. Chemical properties and mechanisms determining the anti-cancer action of garlic-derived organic sulfur compounds. Anticancer Agents Med Chem. 2011;11(3):267–71. https://doi.org/10.2174/187152011795347522.

Article  PubMed  CAS  Google Scholar 

Wang HC, Hsieh SC, Yang JH, Lin SY, Sheen LY. Diallyl trisulfide induces apoptosis of human basal cell carcinoma cells via endoplasmic reticulum stress and the mitochondrial pathway. Nutr Cancer. 2012;64(5):770–80. https://doi.org/10.1080/01635581.2012.676142.

Article  PubMed  CAS  Google Scholar 

Wang HC, Yang JH, Hsieh SC, Sheen LY. Allyl sulfides inhibit cell growth of skin cancer cells through induction of DNA damage mediated G2/M arrest and apoptosis. J Agric Food Chem. 2010;58(11):7096–103. https://doi.org/10.1021/jf100613x.

Article  PubMed  CAS  Google Scholar 

Hong YS, Ham YA, Choi JH, Kim J. Effects of allyl sulfur compounds and garlic extract on the expression of Bcl-2, Bax, and p53 in non-small cell lung cancer cell lines. Exp Mol Med. 2000;32(3):127–34. https://doi.org/10.1038/emm.2000.22.

Article  PubMed  CAS  Google Scholar 

Gobika A, Sangilimuthu AY. Identification of suitable amalgamation with resveratrol, epigallocatechin-3-gallate, and diallyl trisulfide against skin cancer cell lines (A431). Indian J Pharm Educ Res. 2024;58(1):178–86.

Google Scholar 

Miladiyah I, Yuanita E, Nuryadi S, Jumina J, Haryana SM, Mustofa M. Synergistic effect of 1,3,6-trihydroxy-4,5,7-trichloroxanthone in combination with doxorubicin on B-cell lymphoma cells and its mechanism of action through molecular docking. Curr Ther Res Clin Exp. 2020;92: 100576. https://doi.org/10.1016/j.curtheres.2020.100576.

Article  PubMed  PubMed Central  Google Scholar 

Ponraj T, Vivek R, Paulpandi M, Rejeeth C, Babu VN, Vimala K, Kannan S. Mitochondrial dysfunction-induced apoptosis in breast carcinoma cells through a pH-dependent intracellular quercetin NDDS of PVPylated-TiO2 NPs. J Mater Chem B. 2018;6(21):3555–70.

Article  PubMed  CAS  Google Scholar 

Ding X, Lin K, Li Y, Dang M, Jiang L. Synthesis of biocompatible zinc oxide (ZnO) nanoparticles and their neuroprotective effect of 6-OHDA induced neural damage in SH-SY 5Y cells. J Clust Sci. 2020;31:1315–28.

Article  CAS  Google Scholar 

Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006;58:621–81.

Article  PubMed  CAS  Google Scholar 

Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70:440–6.

Article  PubMed  CAS  Google Scholar 

Yoo ES, Choo GS, Kim SH, Woo JS, Kim HJ, Park YS, Kim BS, Kim SK, Park BK, Cho SD, Nam JS, Choi CS, Che JH, Jung JY. Antitumor and apoptosis-inducing effects of piperine on human melanoma cells. Anticancer Res. 2019;39(4):1883–92. https://doi.org/10.21873/anticanres.13296.

Article  PubMed  CAS  Google Scholar 

Rizeq B, Gupta I, Ilesanmi J, AlSafran M, Rahman MM, Ouhtit A. The power of phytochemicals combination in cancer chemoprevention. J Cancer. 2020;11(15):4521–33. https://doi.org/10.7150/jca.34374.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chinembiri TN, du Plessis LH, Gerber M, Hamman JH, du Plessis J. Review of natural compounds for potential skin cancer treatment. Molecules. 2014;19(8):11679–721. https://doi.org/10.3390/molecules190811679.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov. 2006;5(6):493–506. https://doi.org/10.1038/nrd2060.

Article  PubMed  CAS  Google Scholar 

Bhatia N, Agarwal C, Agarwal R. Differential responses of skin cancer-chemopreventive agents silibinin, quercetin, and epigallocatechin 3-gallate on mitogenic signaling and cell cycle regulators in human epidermoid carcinoma A431 cells. Nutr Cancer. 2001;39(2):292–9. https://doi.org/10.1207/S15327914nc392_20.

Article  PubMed  CAS  Google Scholar 

Moungjaroen J, Nimmannit U, Callery PS, Wang L, Azad N, Lipipun V, Chanvorachote P, Rojanasakul Y. Reactive oxygen species mediate caspase activation and apoptosis induced by lipoic acid in human lung epithelial cancer cells through Bcl-2 down-regulation. J Pharmacol Exp Ther. 2006;319:1062–9.

Article  PubMed  CAS  Google Scholar 

Ellis LZ, Liu W, Luo Y, Okamoto M, Qu D, Dunn JH, Fujita M. Green tea polyphenol epigallocatechin-3-gallate suppresses melanoma growth by inhibiting inflammasome and IL-1β secretion. Biochem Biophys Res Commun. 2011;414:551–6.

Article  PubMed 

留言 (0)

沒有登入
gif