Identification of a druggable site on GRP78 at the GRP78-SARS-CoV-2 interface and virtual screening of compounds to disrupt that interface

Nicola M, Alsafi Z, Sohrabi C et al (2020) The socio-economic implications of the coronavirus pandemic (COVID-19): a review. Int J Surg 78:185–193. https://doi.org/10.1016/j.ijsu.2020.04.018

Article  PubMed  PubMed Central  Google Scholar 

Harvey WT, Carabelli AM, Jackson B et al (2021) SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol 19:409–424. https://doi.org/10.1038/s41579-021-00573-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van Egeren D, Novokhodko A, Stoddard M et al (2021) Risk of rapid evolutionary escape from biomedical interventions targeting SARS-CoV-2 spike protein. PLoS ONE 16:e0250780. https://doi.org/10.1371/journal.pone.0250780

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gaurav A, Agrawal N, Al-Nema M, Gautam V (2022) Computational approaches in the discovery and development of therapeutic and prophylactic agents for viral diseases. Curr Top Med Chem 22:2190–2206. https://doi.org/10.2174/1568026623666221019110334

Article  CAS  PubMed  Google Scholar 

Sahoo BM, Bhattamisra SK, Das S et al (2022) Computational approach to combat COVID-19 infection: emerging tools for accelerating drug research. Curr Drug Discov Technol 19:e170122200314. https://doi.org/10.2174/1570163819666220117161308

Article  CAS  PubMed  Google Scholar 

Shanmugam A, Venkattappan A, Gromiha MM (2022) Structure based drug designing approaches in SARS-CoV-2 spike inhibitor design. Curr Top Med Chem 22:2396–2409. https://doi.org/10.2174/1568026623666221103091658

Article  CAS  PubMed  Google Scholar 

Mehmood A, Nawab S, Wang Y et al (2022) Discovering potent inhibitors against the Mpro of the SARS-CoV-2: a medicinal chemistry approach. Comput Biol Med 143:105235. https://doi.org/10.1016/j.compbiomed.2022.105235

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mehmood A, Nawab S, Jia G et al (2023) Supervised screening of Tecovirimat-like compounds as potential inhibitors for the monkeypox virus E8L protein. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2023.2245042

Article  PubMed  Google Scholar 

Lan J, Ge J, Yu J et al (2020) Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581:215–220. https://doi.org/10.1038/s41586-020-2180-5

Article  CAS  PubMed  Google Scholar 

Shang J, Wan Y, Luo C et al (2020) Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A 117:11727–11734. https://doi.org/10.1073/pnas.2003138117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Papageorgiou AC, Mohsin I (2020) The SARS-CoV-2 spike glycoprotein as a drug and vaccine target: structural insights into its complexes with ACE2 and antibodies. Cells 9:2343. https://doi.org/10.3390/cells9112343

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuen K-S, Ye Z-W, Fung S-Y et al (2020) SARS-CoV-2 and COVID-19: the most important research questions. Cell Biosci 10:40. https://doi.org/10.1186/s13578-020-00404-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mostafa-Hedeab G et al (2020) ACE2 as drug target of COVID-19 virus treatment, simplified updated review. rbmb.net 9:97–105. https://doi.org/10.29252/rbmb.9.1.97

Article  CAS  Google Scholar 

Rangel HR, Ortega JT, Maksoud S et al (2020) SARS-CoV-2 host tropism: an in silico analysis of the main cellular factors. Virus Res 289:198154. https://doi.org/10.1016/j.virusres.2020.198154

Article  CAS  PubMed  Google Scholar 

Elfiky AA, Ibrahim IM, Ismail AM, Elshemey WM (2021) A possible role for GRP78 in cross vaccination against COVID-19. J Infect 82:282–327. https://doi.org/10.1016/j.jinf.2020.09.004

Article  CAS  PubMed  Google Scholar 

Carlos AJ, Ha DP, Yeh D-W et al (2021) The chaperone GRP78 is a host auxiliary factor for SARS-CoV-2 and GRP78 depleting antibody blocks viral entry and infection. J Biol Chem 296:100759. https://doi.org/10.1016/j.jbc.2021.100759

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang J, Nune M, Zong Y et al (2015) Close and allosteric opening of the polypeptide-binding site in a human Hsp70 chaperone BiP. Structure 23:2191–2203. https://doi.org/10.1016/j.str.2015.10.012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ibrahim IM, Abdelmalek DH, Elshahat ME, Elfiky AA (2020) COVID-19 spike-host cell receptor GRP78 binding site prediction. J Infect 80:554–562. https://doi.org/10.1016/j.jinf.2020.02.026

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dominguez C, Boelens R, Bonvin AMJJ (2003) HADDOCK: a protein−protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125:1731–1737. https://doi.org/10.1021/ja026939x

Article  CAS  PubMed  Google Scholar 

van Zundert GCP, Rodrigues JPGLM, Trellet M et al (2016) The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol 428:720–725. https://doi.org/10.1016/j.jmb.2015.09.014

Article  CAS  PubMed  Google Scholar 

Yang J, Zong Y, Su J et al (2017) Conformation transitions of the polypeptide-binding pocket support an active substrate release from Hsp70s. Nat Commun 8:1201. https://doi.org/10.1038/s41467-017-01310-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoneda Y, Steiniger SCJ, Čapková K et al (2008) A cell-penetrating peptidic GRP78 ligand for tumor cell-specific prodrug therapy. Bioorg Med Chem Lett 18:1632–1636. https://doi.org/10.1016/j.bmcl.2008.01.060

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim Y, Lillo AM, Steiniger SCJ et al (2006) Targeting heat shock proteins on cancer cells: selection, characterization, and cell-penetrating properties of a peptidic GRP78 ligand. Biochemistry 45:9434–9444. https://doi.org/10.1021/bi060264j

Article  CAS  PubMed  Google Scholar 

Brenke R, Kozakov D, Chuang GY, Beglov D, Hall D, Landon MR, Mattos C, Vajda S (2009) Fragment-based identification of druggable “hot spots” of proteins using Fourier domain correlation techniques. Bioinformatics. https://doi.org/10.1093/bioinformatics/btp036

Article  PubMed  PubMed Central  Google Scholar 

Kozakov D, Grove LE, Hall DR et al (2015) The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Nat Protoc 10:733–755. https://doi.org/10.1038/nprot.2015.043

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kozakov D, Hall DR, Napoleon RL et al (2015) New frontiers in druggability. J Med Chem 58:9063–9088. https://doi.org/10.1021/acs.jmedchem.5b00586

Article  CAS  PubMed  PubMed Central  Google Scholar 

Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a new approach for rapid, accurate docking and scoring—1: method and assessment of docking accuracy. J Med Chem 47:1739–1749. https://doi.org/10.1021/jm0306430

Article  CAS  PubMed  Google Scholar 

Friesner RA, Murphy RB, Repasky MP et al (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes. J Med Chem 49:6177–6196. https://doi.org/10.1021/jm051256o

Article  CAS  PubMed  Google Scholar 

Halgren TA, Murphy RB, Friesner RA et al (2004) Glide: a new approach for rapid, accurate docking and scoring—2: enrichment factors in database screening. J Med Chem 47:1750–1759. https://doi.org/10.1021/jm030644s

Article  CAS  PubMed  Google Scholar 

Sterling T, Irwin JJ (2015) ZINC 15—ligand discovery for everyone. J Chem Inf Model 55:2324–2337. https://doi.org/10.1021/acs.jcim.5b00559

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gaulton A, Bellis LJ, Bento AP et al (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100–D1107. https://doi.org/10.1093/nar/gkr777

Article  CAS  PubMed  Google Scholar 

Schrödinger release 2022–3: QikProp (2021) Schrödinger, LLC, New York

Di L, Kerns EH (2016) Drug-like properties: concepts, structure design and methods from ADME to toxicity optimization, 2nd edn. Academic Press

Google Scholar 

Duan J, Dixon SL, Lowrie JF, Sherman W (2010) Analysis and comparison of 2D fingerprints: insights into database screening performance using eight fingerprint methods. J Mol Graph Model 29:157–170. https://doi.org/10.1016/j.jmgm.2010.05.008

Article 

留言 (0)

沒有登入
gif