The impact of a tDCS and cognitive training intervention on task-based functional connectivity

Park DC, Lautenschlager G, Hedden T, et al. Models of visuospatial and verbal memory across the adult life span. Psychol Aging. 2002;17:299–320.

Article  PubMed  Google Scholar 

Salthouse TA. Aging and measures of processing speed. Biol Psychol. 2000;54:35–54.

Article  CAS  PubMed  Google Scholar 

Lampit A, Hallock H, Valenzuela M. Computerized cognitive training in cognitively healthy older adults: a systematic review and meta-analysis of effect modifiers. PLoS Med. 2014;11. Epub ahead of print https://doi.org/10.1371/journal.pmed.1001756.

Lampit A, Hallock H, Suo C, et al. Cognitive training-induced short-term functional and long-term structural plastic change is related to gains in global cognition in healthy older adults: a pilot study. Front Aging Neurosci. 2015;7:1–13.

Article  Google Scholar 

Edwards JD, Xu H, Clark DO, et al. Speed of processing training results in lower risk of dementia. Alzheimers Dement Transl Res Clin Interv. 2017;3:603–11.

Article  Google Scholar 

Ball K, Berch DB, Helmers KF, et al. Effects of cognitive training interventions with older adults. Jama. 2002;288:2271.

Article  PubMed  PubMed Central  Google Scholar 

Rebok GW, Ball K, Guey LT, et al. Ten-year effects of the advanced cognitive training for independent and vital elderly cognitive training trial on cognition and everyday functioning in older adults. J Am Geriatr Soc. 2014;62:16–24.

Article  PubMed  PubMed Central  Google Scholar 

Hardcastle C, Hausman HK, Kraft JN, et al. Higher-order resting state network association with the useful field of view task in older adults. GeroScience. 2022;44:131–45.

Article  PubMed  Google Scholar 

Kraft JN, Hausman HK, Hardcastle C, et al. Task-based functional connectivity of the useful field of view (UFOV) fMRI task. GeroScience. 2022; https://doi.org/10.1007/s11357-022-00632-1.

Erickson KI, Colcombe SJ, Wadhwa R, et al. Training-induced functional activation changes in dual-task processing: an fMRI study. Cereb Cortex. 2007;17:192–204.

Article  PubMed  Google Scholar 

Jones KT, Stephens JA, Alam M, et al. Longitudinal neurostimulation in older adults improves working memory. PLoS ONE. 2015;10:1–18.

Google Scholar 

Stephens JA, Berryhill ME. Older adults improve on everyday tasks after working memory training and neurostimulation. Brain Stimulat. 2016;9:553–9.

Article  Google Scholar 

Šimko P, Pupíková M, Gajdoš M, et al. Cognitive aftereffects of acute tDCS coupled with cognitive training: an fMRI study in healthy seniors. Neural Plast. 2021; https://doi.org/10.1155/2021/6664479.

Andrews SC, Hoy KE, Enticott PG, et al. Improving working memory: the effect of combining cognitive activity and anodal transcranial direct current stimulation to the left dorsolateral prefrontal cortex. Brain Stimulat. 2011;4:84–9.

Article  Google Scholar 

Nissim NR, O’Shea A, Indahlastari A, et al. Effects of transcranial direct current stimulation paired with cognitive training on functional connectivity of the working memory network in older adults. Front Aging Neurosci. 2019;11 https://doi.org/10.3389/fnagi.2019.00340.

Bikson M, Grossman P, Thomas C, et al. Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimulat. 2016;9:641–61.

Article  Google Scholar 

Woods AJ, Antal A, Bikson M, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol. 2016;127:1031–48.

Article  CAS  PubMed  Google Scholar 

Antal A, Alekseichuk I, Bikson M, et al. Low intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol. 2017;128:1774–809.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527:633–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Indahlastari A, Hardcastle C, Albizu A, et al. A systematic review and meta-analysis of transcranial direct current stimulation to remediate age-related cognitive decline in healthy older adults. Neuropsychiatr Dis Treat. 2021;17:971–90.

Article  PubMed  PubMed Central  Google Scholar 

Opitz A, Paulus W, Will S, et al. Determinants of the electric field during transcranial direct current stimulation. NeuroImage. 2015;109:140–50.

Article  PubMed  Google Scholar 

Kronberg G, Bridi M, Abel T, et al. Direct current stimulation modulates LTP and LTD: activity dependence and dendritic effects. Brain Stimulat. 2017;10:e23–4.

Article  Google Scholar 

Kronberg G, Rahman A, Sharma M, et al. Direct current stimulation boosts hebbian plasticity in vitro. Brain Stimulat. 2020;13:287–301.

Article  Google Scholar 

Evangelista ND, O’Shea A, Kraft JN, et al. Independent contributions of dorsolateral prefrontal structure and function to working memory in healthy older adults. Cereb Cortex. 2021;31:1732–43.

Article  PubMed  Google Scholar 

Kraft JN, Albizu A, O’Shea A, et al. Functional neural correlates of a useful field of view (UFOV)-based fMRI task in older adults. Cereb Cortex. 2022;32:1993–2012.

Article  PubMed  Google Scholar 

Cabeza R. Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging. 2002;17:85–100.

Article  PubMed  Google Scholar 

Brehmer Y, Rieckmann A, Bellander M, et al. Neural correlates of training-related working-memory gains in old age. NeuroImage. 2011;58:1110–20.

Article  PubMed  Google Scholar 

Polanía R, Paulus W, Antal A, et al. Introducing graph theory to track for neuroplastic alterations in the resting human brain: a transcranial direct current stimulation study. NeuroImage. 2011;54:2287–96.

Article  PubMed  Google Scholar 

Krishnamurthy V, Gopinath K, Brown GS, et al. Resting-state fMRI reveals enhanced functional connectivity in spatial navigation networks after transcranial direct current stimulation. Neurosci Lett. 2015;604:80–5.

Article  CAS  PubMed  Google Scholar 

Keeser D, Meindl T, Bor J, et al. Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. J Neurosci. 2011;31:15284–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nissim NR, O’Shea A, Indahlastari A, et al. Effects of in-scanner bilateral frontal tDCS on functional connectivity of the working memory network in older adults. Front Aging Neurosci. 2019;11:1–10.

Google Scholar 

Bachtiar V, Near J, Johansen-Berg H, et al. Modulation of GABA and resting state functional connectivity by transcranial direct current stimulation. eLife. 2015;4:1–9.

Article  Google Scholar 

Caulfield KA, Indahlastari A, Nissim NR, et al. Electric field strength from prefrontal transcranial direct current stimulation determines degree of working memory response: a potential application of reverse-calculation modeling? Neuromodulation. 2022;25:578–87.

Article  PubMed  Google Scholar 

Indahlastari A, Albizu A, O’Shea A, et al. Modeling transcranial electrical stimulation in the aging brain. Brain Stimulat. 2020;13:664–74.

Article  Google Scholar 

Chee MWL, Chen KHM, Zheng H, et al. Cognitive function and brain structure correlations in healthy elderly East Asians. NeuroImage. 2009;46:257–69.

Article  PubMed  Google Scholar 

Batsikadze G, Moliadze V, Paulus W, et al. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol. 2013;591:1987–2000.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mosayebi Samani M, Agboada D, Jamil A, et al. Titrating the neuroplastic effects of cathodal transcranial direct current stimulation (tDCS) over the primary motor cortex. Cortex. 2019;119:350–61.

Article  PubMed  Google Scholar 

Nitsche MA, Fricke K, Henschke U, et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol. 2003;553:293–301.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mosayebi-Samani M, Melo L, Agboada D, et al. Ca2+ channel dynamics explain the nonlinear neuroplasticity induction by cathodal transcranial direct current stimulation over the primary motor cortex. Eur Neuropsychopharmacol. 2020;38:63–72.

Article  CAS  PubMed  Google Scholar 

Woods AJ, Cohen R, Marsiske M, et al. Augmenting cognitive training in older adults (the ACT study): design and methods of a phase III tDCS and cognitive training trial. Contemp Clin Trials. 2018;65:19–32.

Article  PubMed  Google Scholar 

Aust F, Edwards JD. Incremental validity of useful field of view subtests for the prediction of instrumental activities of daily living. J Clin Exp Neuropsychol. 2016;38:497–515.

Article  PubMed  PubMed Central  Google Scholar 

Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006;117:845–50.

Article  PubMed  Google Scholar 

Hausman HK, Alexander GE, Cohen R, et al. Primary outcomes from the augmenting cognitive training in older adults study (ACT): a tDCS and cognitive training randomized clinical trial. Brain Stimulat. 2023;16:904–17.

Article  Google Scholar 

Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2:125–41.

Article  PubMed  Google Scholar 

Behzadi Y, Restom K, Liau J, et al. A component based noise correction method (CompCor) for BOLD

留言 (0)

沒有登入
gif