Characteristics of splenic PD-1+ γδT cells in Plasmodium yoelii nigeriensis infection

Xie H, Xie S, Wang M, et al. Properties and Roles of γδT Cells in Plasmodium yoelii nigeriensis NSM Infected C57BL/6 Mice. Front Cell Infect Microbiol. 2021;11:788546.

Article  CAS  PubMed  Google Scholar 

Daily JP, Minuti A, Khan N. Diagnosis, treatment, and prevention of malaria in the US: a review. JAMA. 2022;328(5):460–71.

Article  PubMed  Google Scholar 

Pamplona A, Silva-Santos B. γδ T cells in malaria: a double-edged sword. FEBS J. 2021;288(4):1118–29.

Article  CAS  PubMed  Google Scholar 

Ortiz-Ruiz A, Postigo M, Gil-Casanova S, et al. Plasmodium species differentiation by non-expert on-line volunteers for remote malaria field diagnosis. Malar J. 2018;17(1):54.

Article  PubMed  PubMed Central  Google Scholar 

Yahata K, Treeck M, Culleton R, Gilberger TW, Kaneko O. Time-lapse imaging of red blood cell invasion by the rodent malaria parasite Plasmodium yoelii. PLoS One. 2012;7(12):e50780.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramiro RS, Reece SE, Obbard DJ. Molecular evolution and phylogenetics of rodent malaria parasites. BMC Evol Biol. 2012;12:219.

Article  PubMed  PubMed Central  Google Scholar 

Kordes M, Ormond L, Rausch S, Matuschewski K, Hafalla J. TLR9 signalling inhibits Plasmodium liver infection by macrophage activation. Eur J Immunol. 2022;52(2):270–84.

Article  CAS  PubMed  Google Scholar 

Cowman AF, Healer J, Marapana D, Marsh K. Malaria: biology and disease. Cell. 2016;167(3):610–24.

Article  CAS  PubMed  Google Scholar 

Hviid L, Lopez-Perez M, Larsen MD, Vidarsson G. No sweet deal: the antibody-mediated immune response to malaria. Trends Parasitol. 2022;38(6):428–34.

Article  CAS  PubMed  Google Scholar 

Van Braeckel-Budimir N, Kurup SP, Harty JT. Regulatory issues in immunity to liver and blood-stage malaria. Curr Opin Immunol. 2016;42:91–7.

Article  PubMed  Google Scholar 

Bhat SA, Vedpathak DM, Chiplunkar SV. Checkpoint blockade rescues the repressive effect of histone deacetylases inhibitors on γδ T cell function. Front Immunol. 2018;9:1615.

Article  PubMed  PubMed Central  Google Scholar 

Khairallah C, Chu TH, Sheridan BS. Tissue adaptations of memory and tissue-resident gamma delta T cells. Front Immunol. 2018;9:2636.

Article  PubMed  PubMed Central  Google Scholar 

Brandes M, Willimann K, Bioley G, et al. Cross-presenting human gammadelta T cells induce robust CD8+ alphabeta T cell responses. Proc Natl Acad Sci USA. 2009;106(7):2307–12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hernández-Castañeda MA, Happ K, Cattalani F, et al. γδ T cells kill Plasmodium falciparum in a granzyme- and granulysin-dependent mechanism during the late blood stage. J Immunol. 2020;204(7):1798–809.

Article  PubMed  PubMed Central  Google Scholar 

Jagannathan P, Lutwama F, Boyle MJ, et al. Vδ2+ T cell response to malaria correlates with protection from infection but is attenuated with repeated exposure. Sci Rep. 2017;7(1):11487.

Article  PubMed  PubMed Central  Google Scholar 

Pauken KE, Wherry EJ. Overcoming T cell exhaustion in infection and cancer. Trends Immunol. 2015;36(4):265–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wykes MN, Zhou YH, Liu XQ, Good MF. Plasmodium yoelii can ablate vaccine-induced long-term protection in mice. J Immunol. 2005;175(4):2510–6.

Article  CAS  PubMed  Google Scholar 

Pierce SK, Miller LH. World Malaria Day 2009: what malaria knows about the immune system that immunologists still do not. J Immunol. 2009;182(9):5171–7.

Article  CAS  PubMed  Google Scholar 

Wykes MN, Lewin SR. Immune checkpoint blockade in infectious diseases. Nat Rev Immunol. 2018;18(2):91–104.

Article  CAS  PubMed  Google Scholar 

Dyck L, Mills K. Immune checkpoints and their inhibition in cancer and infectious diseases. Eur J Immunol. 2017;47(5):765–79.

Article  CAS  PubMed  Google Scholar 

Wherry EJ, Ha SJ, Kaech SM, et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity. 2007;27(4):670–84.

Article  CAS  PubMed  Google Scholar 

Furtado R, Chorro L, Zimmerman N, et al. Blockade of LAG-3 in PD-L1-deficient mice enhances clearance of blood stage malaria independent of humoral responses. Front Immunol. 2020;11:576743.

Article  CAS  PubMed  Google Scholar 

Wykes MN, Horne-Debets JM, Leow CY, Karunarathne DS. Malaria drives T cells to exhaustion. Front Microbiol. 2014;5:249.

Article  PubMed  PubMed Central  Google Scholar 

Chandele A, Mukerjee P, Das G, Ahmed R, Chauhan VS. Phenotypic and functional profiling of malaria-induced CD8 and CD4 T cells during blood-stage infection with Plasmodium yoelii. Immunology. 2011;132(2):273–86.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Illingworth J, Butler NS, Roetynck S, et al. Chronic exposure to Plasmodium falciparum is associated with phenotypic evidence of B and T cell exhaustion. J Immunol. 2013;190(3):1038–47.

Article  CAS  PubMed  Google Scholar 

Wei H, Xie A, Li J, et al. PD-1+ CD4 T cell immune response is mediated by HIF-1α/NFATc1 pathway after P. yoelii infection. Front Immunol. 2022;13:942862.

Article  CAS  PubMed  PubMed Central  Google Scholar 

LaFleur MW, Nguyen TH, Coxe MA, et al. PTPN2 regulates the generation of exhausted CD8+ T cell subpopulations and restrains tumor immunity. Nat Immunol. 2019;20(10):1335–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan O, Giles JR, McDonald S, et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature. 2019;571(7764):211–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen D, Guo Y, Jiang J, et al. γδ T cell exhaustion: opportunities for intervention. J Leukoc Biol. 2022;112(6):1669–76.

Article  CAS  PubMed  Google Scholar 

Chi Z, Lu Y, Yang Y, Li B, Lu P. Transcriptional and epigenetic regulation of PD-1 expression. Cell Mol Life Sci. 2021;78(7):3239–46.

Article  CAS  PubMed  Google Scholar 

Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15(8):486–99.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lino C, Barros-Martins J, Oberdörfer L, Walzer T, Prinz I. Eomes expression reports the progressive differentiation of IFN-γ-producing Th1-like γδ T cells. Eur J Immunol. 2017;47(6):970–81.

Article  CAS  PubMed  Google Scholar 

Ribot JC, deBarros A, Pang DJ, et al. CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets. Nat Immunol. 2009;10(4):427–36.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moebius J, Guha R, Peterson M, et al. PD-1 Expression on NK Cells in malaria-exposed individuals is associated with diminished natural cytotoxicity and enhanced antibody-dependent cellular cytotoxicity. Infect Immun. 2020;88(3):1–16.

Article  Google Scholar 

Xie H, Chen D, Li L, et al. Immune response of γδT cells in Schistosome japonicum-infected C57BL/6 mouse liver. Parasite Immunol. 2014;36(12):658–67.

Article  CAS  PubMed  Google Scholar 

Familiar-Macedo D, Amancio Paiva I, Badolato-Corrêa da Silva J, et al. Evaluation of the expression of CCR5 and CX3CR1 receptors and correlation with the functionality of T cells in women infected with ZIKV during pregnancy. Viruses. 2021;13(2):1–18

Freitas do Rosario AP, Langhorne J. T cell-derived IL-10 and its impact on the regulation of host responses during malaria. Int J Parasitol. 2012;42(6):549–55.

Article  PubMed  Google Scholar 

Jagannathan P, Kim CC, Greenhouse B, et al. Loss and dysfunction of Vδ2+ γδ T cells are associated with clinical tolerance to malaria. Sci Transl Med. 2014;6(251):251ra117.

Article  PubMed

留言 (0)

沒有登入
gif