Crickets in the spotlight: exploring the impact of light on circadian behavior

Abdelsalam S, Uemura H, Umezaki Y et al (2008) Characterization of PDF-immunoreactive neurons in the optic lobe and cerebral lobe of the cricket, Gryllus bimaculatus. J Insect Physiol 54:1205–1212. https://doi.org/10.1016/j.jinsphys.2008.05.001

Article  CAS  Google Scholar 

Abe Y, Ushirogawa H, Tomioka K (1997) Circadian locomotor rhythms in the cricket, Gryllodes sigillatus I. localization of the pacemaker and the photoreceptor. Zool Sci 14:719–727. https://doi.org/10.2108/zsj.14.719

Article  CAS  Google Scholar 

Alaasam VJ, Kernbach ME, Miller CR, Ferguson SM (2021) The diversity of photosensitivity and its implications for light pollution. Integr Comp Biol 61:1170–1181. https://doi.org/10.1093/icb/icab156

Article  Google Scholar 

Allada R, White NE, So WV et al (1998) A mutant Drosophila homolog of mammalian clock disrupts circadian rhythms and transcription of period and timeless. Cell 93:791–804. https://doi.org/10.1016/S0092-8674(00)81440-3

Article  CAS  Google Scholar 

Aschoff J (1981) Biological rhythms. Handbook of behavioral neurobiology, 1st edn. Plenum Press, New York

Google Scholar 

Aschoff J, von Goetz C (1988) Masking of circadian activity rhythms in male golden hamsters by the presence of females. Behav Ecol Sociobiol 22:409–412. https://doi.org/10.1007/BF00294978

Article  Google Scholar 

Aube M (2015) Physical behaviour of anthropogenic light propagation into the nocturnal environment. Philos Trans R Soc B Biol Sci 370:20140117. https://doi.org/10.1098/rstb.2014.0117

Article  Google Scholar 

Barta A, Horváth G (2004) Why is it advantageous for animals to detect celestial polarization in the ultraviolet? Skylight polarization under clouds and canopies is strongest in the UV. J Theor Biol 226:429–437. https://doi.org/10.1016/j.jtbi.2003.09.017

Article  Google Scholar 

Baxter-Gilbert J, Baider C, Florens FBV et al (2021) Nocturnal foraging and activity by diurnal lizards: six species of day geckos (Phelsuma spp.) using the night-light niche. Austral Ecol 46:501–506. https://doi.org/10.1111/aec.13012

Article  Google Scholar 

Beer K, Helfrich-Förster C (2020) Model and non-model insects in chronobiology. Front Behav Neurosci 14:601676. https://doi.org/10.3389/fnbeh.2020.601676

Article  CAS  Google Scholar 

Benavides-Lopez JL, ter Hofstede H, Robillard T (2020) Novel system of communication in crickets originated at the same time as bat echolocation and includes male-male multimodal communication. Sci Nat 107:1–6. https://doi.org/10.1007/s00114-020-1666-1

Article  CAS  Google Scholar 

Bentley D, Hoy RR (1974) The neurobiology of cricket song. Sci Am 231:34–50. https://doi.org/10.1038/scientificamerican0874-34

Article  CAS  Google Scholar 

Blum M, Labhart T (2000) Photoreceptor visual fields, ommatidial array, and receptor axon projections in the polarisation-sensitive dorsal rim area of the cricket compound eye. J Comp Physiol A 186:119–128. https://doi.org/10.1007/s003590050012

Article  CAS  Google Scholar 

Bolliger J, Hennet T, Wermelinger B et al (2020) Effects of traffic-regulated street lighting on nocturnal insect abundance and bat activity. Basic Appl Ecol 47:44–56. https://doi.org/10.1016/j.baae.2020.06.003

Article  Google Scholar 

Borges RM (2018) Dark matters: challenges of nocturnal communication between plants and animals in delivery of pollination services. Yale J Biol Med 91:33–42

CAS  Google Scholar 

Brady J (1974) The physiology of insect circadian rhythms. Adv Insect Phys 10:1–115. https://doi.org/10.1016/S0065-2806(08)60129-0

Article  Google Scholar 

Bretman A, Dawson DA, Horsburgh GJ, Tregenza T (2008) New microsatellite loci isolated from the field cricket Gryllus bimaculatus characterized in two cricket species, Gryllus bimaculatus and Gryllus campestris. Mol Ecol Resour 8:1015–1019. https://doi.org/10.1111/j.1755-0998.2008.02139.x

Article  CAS  Google Scholar 

Brunner D, Labhart T (1987) Behavioural evidence for polarization vision in crickets. Physiol Entomol 12:1–10. https://doi.org/10.1111/j.1365-3032.1987.tb00718.x

Article  Google Scholar 

Carrillo-Vico A, Lardone PJ, Álvarez-Śnchez N et al (2013) Melatonin: buffering the immune system. Int J Mol Sci 14:8638–8683. https://doi.org/10.3390/ijms14048638

Article  CAS  Google Scholar 

Ceriani MF, Darlington TK, Staknis D et al (1999) Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science 285:553–556. https://doi.org/10.1126/science.285.5427.553

Article  CAS  Google Scholar 

Chen Y, Wei W, Tzeng DTW et al (2021) Effects of artificial light at night (ALAN) on gene expression of Aquatica ficta Fire fly larvae. Environ Pollut 281:1–8. https://doi.org/10.1016/j.envpol.2021.116944

Article  CAS  Google Scholar 

Costello RA, Symes LB (2014) Effects of anthropogenic noise on male signalling behaviour and female phonotaxis in Oecanthus tree crickets. Anim Behav 95:15–22. https://doi.org/10.1016/j.anbehav.2014.05.009

Article  Google Scholar 

Cymborowski B (1981) Transplantation of circadian pacemaker in the house cricket, Acheta domesticus L. J Interdiscipl Cycle Res 12:133–140. https://doi.org/10.1080/09291018109359734

Article  Google Scholar 

Cymborowski B, Brady J (1972) Insect circadian rhythms transmitted by parabiosis—a re-examination. Nat New Biol 240:221–222. https://doi.org/10.1038/239137a0

Article  Google Scholar 

Cymborowski B, Dutkowski A (1969) Circadian changes in RNA synthesis in the neurosecretory cells of the brain and suboesophageal ganglion of the house cricket. J Insect Physiol 15:1187–1197. https://doi.org/10.1016/0022-1910(69)90229-7

Article  CAS  Google Scholar 

Daan S, Aschoff J (2001) The entrainment of circadian systems. In: Takahashi JS, Turek FW, Moore RY (eds) Circadian clocks. Handbook of behavioral neurobiology. Springer, Boston, pp 7–43

Chapter  Google Scholar 

Duarte MHL, Caliari EP, Scarpelli MDA et al (2019) Effects of mining truck traffic on cricket calling activity. J Acoust Soc Am 146:656–664. https://doi.org/10.1121/1.5119125

Article  Google Scholar 

Durrant J, Green MP, Jones TM (2020) Dim artificial light at night reduces the cellular immune response of the black field cricket, Teleogryllus commodus. Insect Sci 27:571–582. https://doi.org/10.1111/1744-7917.12665

Article  CAS  Google Scholar 

Durrant J, Michaelides EB, Rupasinghe T et al (2015) Constant illumination reduces circulating melatonin and impairs immune function in the cricket Teleogryllus commodus. PeerJ 3:e1075. https://doi.org/10.7717/peerj.1075

Article  Google Scholar 

Dutkowski AB, Cymborowski B, Przeklȩcka A (1971) Circadian changes in the ultrastructure of neurosecretory cells of the pars intercerebralis of the house cricket. J Insect Physiol 17:1763–1772. https://doi.org/10.1016/0022-1910(71)90073-4

Article  Google Scholar 

Eisenbeis G (2006) Artificial night lighting and insects: attraction of insects to streetlamps in a rural seting in Germany. In: Rich C, Longcore T (eds) Ecological consequences of artificial night lighting, 1st edn. Island Press, Washington, pp 281–304

Google Scholar 

Fabre JH, De Mattos AT, Stawell R (1921) Fabre’s book of insects. Edinburgh University Press, London

Book  Google Scholar 

Falchi F, Furgoni R, Gallaway TAA et al (2019) Light pollution in USA and Europe: the good, the bad and the ugly. J Environ Manag 248:109227. https://doi.org/10.1016/j.jenvman.2019.06.128

Article  CAS  Google Scholar 

Fergus DJ, Shaw KL (2013) Circadian rhythms and period expression in the hawaiian cricket genus Laupala. Behav Genet 43:241–253. https://doi.org/10.1007/s10519-012-9576-4

Article  Google Scholar 

Fisher DN, Rodríguez-Muñoz R, Tregenza T (2019) Dynamic networks of fighting and mating in a wild cricket population. Anim Behav 155:179–188. https://doi.org/10.1016/j.anbehav.2019.05.026

Article  Google Scholar 

Foster JJ, Tocco C, Smolka J et al (2021) Light pollution forces a change in dung beetle orientation behavior. Curr Biol 31:3935-3942e3. https://doi.org/10.1016/j.cub.2021.06.038

Article  CAS  Google Scholar 

Frolov RV, Ignatova II (2020) Electrophysiological adaptations of insect photoreceptors and their elementary responses to diurnal and nocturnal lifestyles. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 206:55–69. https://doi.org/10.1007/s00359-019-01392-8

Article  Google Scholar 

Frolov RV, Immonen EV, Weckström M (2014) Performance of blue- and green-sensitive photoreceptors of the cricket Gryllus bimaculatus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 200:209–219. https://doi.org/10.1007/s00359-013-0879-6

Article  CAS  Google Scholar 

Garrett JK, Donald PF, Gaston KJ (2020) Skyglow extends into the world’s key biodiversity areas. Anim Conserv 23:153–159. https://doi.org/10.1111/acv.12480

Article  Google Scholar 

Germ M, Tomioka K (1998) Circadian period modulation and masking effects induced by repetitive light pulses in locomotor rhythms of the cricket, Gryllus bimaculatus. Zool Sci 15:309–316. https://doi.org/10.2108/zsj.15.309

Article  CAS  Google Scholar 

Giavi S, Blösch S, Schuster G, Knop E (2020) Artificial light at night can modify ecosystem functioning beyond the lit area. Sci Rep 10:1–12. https://doi.org/10.1038/s41598-020-68667-y

Article  CAS  Google Scholar 

Haim A, Zubidat AE, Zubida AE (2015) Artificial light at night: melatonin as a mediator between the environment and epigenome. Philos Trans R Soc B Biol Sci 370:20140121–20140121. https://doi.org/10.1098/rstb.2014.0121

Article  CAS  Google Scholar 

Hall M, Robinson D (2021) Acoustic signalling in Orthoptera, 1st edn. Elsevier, Oxford

Hamanaka Y, Lu Z, Shiga S (2022) Morphology and synaptic connections of pigment‐dispersing factor‐immunoreactive neurons projecting to the lateral protocerebrum in the large black chafer, Holotrichia parallela. J Comp Neurol 530(17):2994–3010.‏ https://doi.org/10.1002/cne.25391

Article  CAS  Google Scholar 

Hänel A, Posch T, Ribas SJ et al (2018) Measuring night sky brightness: methods and challenges. J Quant Spectrosc Radiat Transf 205:278–290. https://doi.org/10.1016/j.jqsrt.2017.09.008

Article 

留言 (0)

沒有登入
gif