Evolutionary preservation of CpG dinucleotides in RAG1 may elucidate the relatively high rate of methylation-mediated mutagenesis of RAG1 transposase

Ramsden DA, Baetz K, Wu GE. Conservation of sequence in recombination signal sequence spacers. Nucleic Acids Res. 1994;22(10):1785–96. https://doi.org/10.1093/nar/22.10.1785.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang HHY, et al. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol. 2017;18(8):495–506. https://doi.org/10.1038/nrm.2017.48.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kapitonov VV, Koonin EV. Evolution of the RAG1-RAG2 locus: both proteins came from the same transposon. Biol Direct. 2015;10:20. https://doi.org/10.1186/s13062-015-0055-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, et al. Transposon molecular domestication and the evolution of the RAG recombinase. Nature. 2019;569(7754):79–84. https://doi.org/10.1038/s41586-019-1093-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ben-Hattar J, Jiricny J. Methylation of single CpG dinucleotides within a promoter element of the Herpes simplex virus tk gene reduces its transcription in vivo. Gene. 1988;65(2):219–27. https://doi.org/10.1016/0378-1119(88)90458-1.

Article  CAS  PubMed  Google Scholar 

Watt F, Molloy PL. Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev. 1988;2(9):1136–43. https://doi.org/10.1101/gad.2.9.1136.

Article  CAS  PubMed  Google Scholar 

Iguchi-Ariga SM, Schaffner W. CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev. 1989;3(5):612–9. https://doi.org/10.1101/gad.3.5.612.

Article  CAS  PubMed  Google Scholar 

Murphy KM, Travers P, Walport M. in NCBI bookshelf. London: Garland Pub; 2007.

Google Scholar 

Jabbari K, Bernardi G. Cytosine methylation and CpG, TpG (CpA) and TpA frequencies. Gene. 2004;333:143–9. https://doi.org/10.1016/j.gene.2004.02.043.

Article  CAS  PubMed  Google Scholar 

Kumar S, et al. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol. 2018;35(6):1547–9. https://doi.org/10.1093/molbev/msy096.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abolhassani H, et al. A hypomorphic recombination-activating gene 1 (RAG1) mutation resulting in a phenotype resembling common variable immunodeficiency. J Allergy Clin Immunol. 2014;134(6):1375–80. https://doi.org/10.1016/j.jaci.2014.04.042.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Allan J, et al. The structure of histone H1 and its location in chromatin. Nature. 1980;288(5792):675–9. https://doi.org/10.1038/288675a0.

Article  CAS  PubMed  Google Scholar 

Alsmadi O, et al. Molecular analysis of T-B-NK+ severe combined immunodeficiency and Omenn syndrome cases in Saudi Arabia. BMC Med Genet. 2009;10:116. https://doi.org/10.1186/1471-2350-10-116.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asai E, et al. Analysis of mutations and recombination activity in RAG-deficient patients. Clin Immunol. 2011;138(2):172–7. https://doi.org/10.1016/j.clim.2010.11.005.

Article  CAS  PubMed  Google Scholar 

Avila EM, et al. Highly variable clinical phenotypes of hypomorphic RAG1 mutations. Pediatrics. 2010;126(5):e1248–52. https://doi.org/10.1542/peds.2009-3171.

Article  PubMed  Google Scholar 

Bai X, et al. Clinical, immunologic, and genetic characteristics of RAG mutations in 15 Chinese patients with SCID and Omenn syndrome. Immunol Res. 2016;64(2):497–507. https://doi.org/10.1007/s12026-015-8723-4.

Article  CAS  PubMed  Google Scholar 

Baumann M, et al. Regulation of V(D)J recombination by nucleosome positioning at recombination signal sequences. Embo J. 2003;22(19):5197–207. https://doi.org/10.1093/emboj/cdg487.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cassani B, et al. Defect of regulatory T cells in patients with Omenn syndrome. J Allergy Clin Immunol. 2010;125(1):209–16. https://doi.org/10.1016/j.jaci.2009.10.023.

Article  CAS  PubMed  Google Scholar 

Cavadini P, et al. AIRE deficiency in thymus of 2 patients with Omenn syndrome. J Clin Invest. 2005;115(3):728–32. https://doi.org/10.1172/JCI23087.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen K, et al. Autoimmunity due to RAG deficiency and estimated disease incidence in RAG1/2 mutations. J Allergy Clin Immunol. 2014;133(3):880-2 e10. https://doi.org/10.1016/j.jaci.2013.11.038.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chi ZH, et al. Targeted high-throughput sequencing technique for the molecular diagnosis of primary immunodeficiency disorders. Medicine. 2018;97(40):e12695. https://doi.org/10.1097/MD.0000000000012695. (Baltimore).

Article  PubMed  PubMed Central  Google Scholar 

Chou J, et al. A novel homozygous mutation in recombination activating gene 2 in 2 relatives with different clinical phenotypes: Omenn syndrome and hyper-IgM syndrome. J Allergy Clin Immunol. 2012;130(6):1414–6. https://doi.org/10.1016/j.jaci.2012.06.012.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corneo B, et al. Three-dimensional clustering of human RAG2 gene mutations in severe combined immune deficiency. J Biol Chem. 2000;275(17):12672–5. https://doi.org/10.1074/jbc.275.17.12672.

Article  CAS  PubMed  Google Scholar 

Corneo B, et al. Identical mutations in RAG1 or RAG2 genes leading to defective V(D)J recombinase activity can cause either T-B-severe combined immune deficiency or Omenn syndrome. Blood. 2001;97(9):2772–6. https://doi.org/10.1182/blood.v97.9.2772.

Article  CAS  PubMed  Google Scholar 

Crestani E, et al. RAG1 reversion mosaicism in a patient with Omenn syndrome. J Clin Immunol. 2014;34(5):551–4. https://doi.org/10.1007/s10875-014-0051-2.

Article  PubMed  PubMed Central  Google Scholar 

Dalal I, et al. Novel mutations in RAG1/2 and ADA genes in Israeli patients presenting with T-B-SCID or Omenn syndrome. Clin Immunol. 2011;140(3):284–90. https://doi.org/10.1016/j.clim.2011.04.011.

Article  CAS  PubMed  Google Scholar 

De Ravin SS, et al. Hypomorphic Rag mutations can cause destructive midline granulomatous disease. Blood. 2010;116(8):1263–71. https://doi.org/10.1182/blood-2010-02-267583.

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Villartay JP, et al. A novel immunodeficiency associated with hypomorphic RAG1 mutations and CMV infection. J Clin Invest. 2005;115(11):3291–9. https://doi.org/10.1172/JCI25178.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dhingra N, et al. Severe combined immunodeficiency caused by a new homozygous RAG1 mutation with progressive encephalopathy. Hematol Oncol Stem Cell Ther. 2014;7(1):44–9. https://doi.org/10.1016/j.hemonc.2013.11.001.

Article  PubMed  Google Scholar 

Ehl S, et al. A variant of SCID with specific immune responses and predominance of gamma delta T cells. J Clin Invest. 2005;115(11):3140–8. https://doi.org/10.1172/JCI25221.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Erman B, et al. Investigation of genetic defects in severe combined immunodeficiency patients from Turkey by targeted sequencing. Scand J Immunol. 2017;85(3):227–34. https://doi.org/10.1111/sji.12523.

Article  CAS  PubMed  Google Scholar 

Fazlollahi MR, et al. Clinical, laboratory, and molecular findings for 63 patients with severe combined immunodeficiency: a decade’s experience. J Investig Allergol Clin Immunol. 2017;27(5):299–304. https://doi.org/10.18176/jiaci.0147.

Felgentreff K, et al. Clinical and immunological manifestations of patients with atypical severe combined immunodeficiency. Clin Immunol. 2011;141(1):73–82. https://doi.org/10.1016/j.clim.2011.05.007.

Article  CAS  PubMed  Google Scholar 

Geier CB, et al. Leaky RAG deficiency in adult patients with impaired antibody production against bacterial polysaccharide antigens. PLoS ONE. 2015;10(7):e0133220. https://doi.org/10.1371/journal.pone.0133220.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif