The search for gastrointestinal inflammation in autism: a systematic review and meta-analysis of non-invasive gastrointestinal markers

Tye C, Runicles AK, Whitehouse AJ, Alvares GA. Characterizing the interplay between autism spectrum disorder and comorbid medical conditions: an integrative review. Front Psychiatry. 2018. https://doi.org/10.3389/fpsyt.2018.00751.

Article  PubMed  Google Scholar 

McElhanon BO, McCracken C, Karpen S, Sharp WG. Gastrointestinal symptoms in autism spectrum disorder: a meta-analysis. Pediatrics. 2014;133(5):872–83. https://doi.org/10.1542/peds.2013-3995.

Article  PubMed  Google Scholar 

Holingue C, Newill C, Lee L-C, Pasricha PJ, Daniele FM. Gastrointestinal symptoms in autism spectrum disorder: a review of the literature on ascertainment and prevalence. Autism Res. 2018;11(1):24–36. https://doi.org/10.1002/aur.1854.

Article  PubMed  Google Scholar 

Warreman EB, Nooteboom LA, Terry MB, Hoek HW, Leenen PJM, VanRossum EFC, et al. Psychological, behavioural and biological factors associated with gastrointestinal symptoms in autistic adults and adults with autistic traits. Autism. 2023. https://doi.org/10.1177/13623613231155324.

Article  PubMed  PubMed Central  Google Scholar 

Niesler B, Rappold GA. Emerging evidence for gene mutations driving both brain and gut dysfunction in autism spectrum disorder. Mol Psychiatry. 2021;26(5):1442–4. https://doi.org/10.1038/s41380-020-0778-5.

Article  PubMed  Google Scholar 

Mathew NE, Mallitt KA, Masi A, Katz T, Walker AK, Morris MJ, et al. Dietary intake in children on the autism spectrum is altered and linked to differences in autistic traits and sensory processing styles. Autism Res. 2022;15(10):1824–39. https://doi.org/10.1002/aur.2798.

Article  PubMed  PubMed Central  Google Scholar 

Yap CX, Henders AK, Alvares GA, Wood DLA, Krause L, Tyson GW, et al. Autism-related dietary preferences mediate autism-gut microbiome associations. Cell. 2021;184(24):5916-31.e17. https://doi.org/10.1016/j.cell.2021.10.015.

Article  CAS  PubMed  Google Scholar 

Chakraborty P, Carpenter KLH, Major S, Deaver M, Vermeer S, Herold B, et al. Gastrointestinal problems are associated with increased repetitive behaviors but not social communication difficulties in young children with autism spectrum disorders. Autism. 2021;25(2):405–15. https://doi.org/10.1177/1362361320959503.

Article  PubMed  Google Scholar 

Restrepo B, Angkustsiri K, Taylor SL, Rogers SJ, Cabral J, Heath B, et al. Developmental–behavioral profiles in children with autism spectrum disorder and co-occurring gastrointestinal symptoms. Autism Res. 2020;13(10):1778–89. https://doi.org/10.1002/aur.2354.

Article  PubMed  PubMed Central  Google Scholar 

Prosperi M, Santocchi E, Muratori F, Narducci C, Calderoni S, Tancredi R, et al. Vocal and motor behaviors as a possible expression of gastrointestinal problems in preschoolers with Autism Spectrum Disorder. BMC Pediatr. 2019;19(1):466. https://doi.org/10.1186/s12887-019-1841-8.

Article  PubMed  PubMed Central  Google Scholar 

Dovgan K, Gynegrowski K, Ferguson BJ. Bidirectional relationship between internalizing symptoms and gastrointestinal problems in youth with Autism Spectrum Disorder. J Autism Dev Disord. 2022. https://doi.org/10.1007/s10803-022-05539-6.

Article  PubMed  Google Scholar 

Al-Ayadhi L, Zayed N, Bhat RS, Moubayed NMS, Al-Muammar MN, El-Ansary A. The use of biomarkers associated with leaky gut as a diagnostic tool for early intervention in autism spectrum disorder: a systematic review. Gut Pathogens. 2021;13(1):54. https://doi.org/10.1186/s13099-021-00448-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim JY, Choi MJ, Ha S, Hwang J, Koyanagi A, Dragioti E, et al. Association between autism spectrum disorder and inflammatory bowel disease: a systematic review and meta-analysis. Autism Res. 2022;15(2):340–52. https://doi.org/10.1002/aur.2656.

Article  PubMed  Google Scholar 

Kushak RI, Buie TM, Murray KF, Newburg DS, Chen C, Nestoridi E, et al. Evaluation of intestinal function in children with autism and gastrointestinal symptoms. J Pediatr Gastroenterol Nutr. 2016;62(5):687–91. https://doi.org/10.1097/mpg.0000000000001174.

Article  PubMed  Google Scholar 

Pang T, Leach ST, Katz T, Day AS, Ooi CY. Fecal biomarkers of intestinal health and disease in children. Front Pediatr. 2014;2:6. https://doi.org/10.3389/fped.2014.00006.

Article  PubMed  PubMed Central  Google Scholar 

Bromke MA, Neubauer K, Kempiński R, Krzystek-Korpacka M. Faecal calprotectin in assessment of mucosal healing in adults with inflammatory bowel disease: a meta-analysis. J Clin Med. 2021;10(10):2203. https://doi.org/10.3390/jcm10102203.

Article  PubMed  PubMed Central  Google Scholar 

Manolakis AC, Kapsoritakis AN, Georgoulias P, Tzavara C, Valotassiou V, Kapsoritaki A, et al. Moderate performance of serum S100A12, in distinguishing inflammatory bowel disease from irritable bowel syndrome. BMC Gastroenterol. 2010;10:1–7. https://doi.org/10.1186/1471-230X-10-118.

Article  CAS  Google Scholar 

Siddiqui I, Majid H, Abid S. Update on clinical and research application of fecal biomarkers for gastrointestinal diseases. World J Gastrointest Pharmacol Ther. 2017;8(1):39. https://doi.org/10.4292/wjgpt.v8.i1.39.

Article  PubMed  PubMed Central  Google Scholar 

Di Ruscio M, Vernia F, Ciccone A, Frieri G, Latella G. Surrogate fecal biomarkers in inflammatory bowel disease: rivals or complementary tools of fecal calprotectin? Inflamm Bowel Dis. 2018;24(1):78–92. https://doi.org/10.1093/ibd/izx011.

Article  Google Scholar 

Sherwood RA. Faecal markers of gastrointestinal inflammation. J Clin Pathol. 2012;65(11):981–5. https://doi.org/10.1136/jclinpath-2012-200901.

Article  PubMed  Google Scholar 

West KA, Yin X, Rutherford EM, Wee B, Choi J, Chrisman BS, et al. Multi-angle meta-analysis of the gut microbiome in Autism Spectrum Disorder: a step toward understanding patient subgroups. Sci Rep. 2022;12(1):17034. https://doi.org/10.1038/s41598-022-21327-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9. https://doi.org/10.7326/0003-4819-151-4-200908180-00135.

Article  PubMed  Google Scholar 

Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:1–13. https://doi.org/10.1186/1471-2288-14-135.

Article  Google Scholar 

Whitehead SJ, French J, Brookes MJ, Ford C, Gama R. Between-assay variability of faecal calprotectin enzyme-linked immunosorbent assay kits. Ann Clin Biochem. 2013;50(Pt 1):53–61. https://doi.org/10.1258/acb.2012.011272.

Article  CAS  PubMed  Google Scholar 

Labaere D, Smismans A, Van Olmen A, Christiaens P, D’Haens G, Moons V, et al. Comparison of six different calprotectin assays for the assessment of inflammatory bowel disease. United Eur Gastroenterol J. 2014;2(1):30–7. https://doi.org/10.1177/2050640613518201.

Article  Google Scholar 

Goll R, Heitmann R, Moe ØK, Carlsen K, Florholmen J. Head to head comparison of two commercial fecal calprotectin kits as predictor of Mayo endoscopic sub-score and mucosal TNF expression in ulcerative colitis. PLoS ONE. 2019;14(12):e0224895. https://doi.org/10.1371/journal.pone.0224895.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stedman A, Taylor B, Erard M, Peura C, Siegel M. Are children severely affected by autism spectrum disorder underrepresented in treatment studies? An analysis of the literature. J Autism Dev Disord. 2019;49(4):1378–90. https://doi.org/10.1007/s10803-018-3844-y.

Article  PubMed  Google Scholar 

Friedrich JO, Adhikari NKJ, Beyene J. The ratio of means method as an alternative to mean differences for analyzing continuous outcome variables in meta-analysis: a simulation study. BMC Med Res Methodol. 2008;8(1):32. https://doi.org/10.1186/1471-2288-8-32.

Article  PubMed  PubMed Central  Google Scholar 

Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58. https://doi.org/10.1002/sim.1186.

Article  PubMed  Google Scholar 

Adams JB, Johansen LJ, Powell LD, Quig D, Rubin RA. Gastrointestinal flora and gastrointestinal status in children with autism–comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 2011;11(1):1–13. https://doi.org/10.1186/1471-230X-11-22.

Article  Google Scholar 

Wang M, Wan J, Rong H, He F, Wang H, Zhou J, et al. Alterations in gut glutamate metabolism associated with changes in gut microbiota composition in children with autism spectrum disorder. mSystems. 2019;4(1):e0032118. https://doi.org/10.1128/mSystems.00321-18.

Article  Google Scholar 

Fernell E, Fagerberg UL, Hellström PM. No evidence for a clear link between active intestinal inflammation and autism based on analyses of faecal calprotectin and rectal nitric oxide. Acta Paediatr (Oslo, Norway: 1992). 2007;96(7):1076–9. https://doi.org/10.1111/j.1651-2227.2007.00298.x.

Article  Google Scholar 

Zhou J, He F, Yang F, Yang Z, Xie Y, Zhou S, et al. Increased stool immunoglobulin A level in children with autism spectrum disorders. Res Dev Disabil. 2018;82:90–4. https://doi.org/10.1016/j.ridd.2017.10.009.

Article  PubMed  Google Scholar 

Wang M, Zhou J, He F, Cai C, Wang H, Wang Y, et al. Alteration of gut microbiota-associated epitopes in children with autism spectrum disorders. Brain Behav Immun. 2019;75:192–9. https://doi.org/10.1016/j.bbi.2018.10.006.

Article  PubMed  Google Scholar 

Laghi L, Mastromarino P, Prosperi M, Morales MA, Calderoni S, Santocchi E, et al. Are fecal metabolome and microbiota profiles correlated with autism severity? A cross-sectional study on ASD preschoolers. Metabolites. 2021;11(10):654. https://doi.org/10.3390/metabo11100654.

Article 

留言 (0)

沒有登入
gif