Sublethal and Transgenerational Effects of Reduced-Risk Insecticides on Macrolophus basicornis (Hemiptera: Miridae)

Abbes K, Biondi A, Kurtulus A, Ricupero M, Russo A, Siscaro G, Chermiti B, Zappalà L (2015) Combined non-target effects of insecticide and high temperature on the parasitoid Bracon nigricans. Plos One 10:e0138411. https://doi.org/10.1371/journal.pone.0138411

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amarasekare KG, Shearer PW (2013) Laboratory bioassays to estimate the lethal and sublethal effects of various insecticides and fungicides on Deraeocoris brevis (Hemiptera: Miridae). J Econ Entomol 106:776–785. https://doi.org/10.1603/EC12432

Article  CAS  PubMed  Google Scholar 

Amarasekare KG, Shearer PW, Mills NJ (2016) Testing the selectivity of pesticide effects on natural enemies in laboratory bioassays. Biol Control 102:7–16. https://doi.org/10.1016/j.biocontrol.2015.10.015

Article  CAS  Google Scholar 

Barzman M, Bàrberi P, Birch ANE, Boonekamp P, Dachbrodt-Saaydeh S, Graf B, Hommel B, Jensen JE, Kiss J, Kudsk P, Lamichhane JR, Messéan A, Moonen AC, Ratnadass A, Ricci P, Sarah JL, Sattin M (2015) Eight principles of integrated pest management. Agron Sustain Dev 35:1199–1215. https://doi.org/10.1007/s13593-015-0327-9

Article  Google Scholar 

Bensafi-Gheraibia H, Kissoum N, Hamida ZC, Farine JP, Soltani N (2021) Topical bioassay of Oberon® on Drosophila melanogaster pupae: delayed effects on ovarian proteins, cuticular hydrocarbons and sexual behaviour. Invertebr Reprod Dev 65:35–47. https://doi.org/10.1080/07924259.2020.1862315

Article  CAS  Google Scholar 

Besard L, Mommaerts V, Vandeven J, Cuvelier X, Sterk G, Smagghe G (2010) Compatibility of traditional and novel acaricides with bumblebees (Bombus terrestris): a first laboratory assessment of toxicity and sublethal effects. Pest Manag Sci 66:786–793. https://doi.org/10.1002/ps.1943

Article  CAS  PubMed  Google Scholar 

Bouabida H, Tine-djebbar F, Tine S, Soltani N (2017) Activity of a lipid synthesis inhibitor (spiromesifen) in Culiseta longiareolata (Diptera: Culicidae). Asian Pac J Trop Biomed 7:1120–1124. https://doi.org/10.1016/j.apjtb.2017.10.015

Article  Google Scholar 

Bretschneider T, Benet-Buchholz J, Fischer R, Nauen R (2003) Spirodiclofen and spiromesifen - novel acaricidal and insecticidal tetronic acid derivatives with a new mode of action. Chimia 57:697–701. https://doi.org/10.2533/000942903777678588

Article  CAS  Google Scholar 

Bueno VHP, Montes FC, Pereira AMC, Lins JC, van Lenteren JC (2012) Can recently found Brazilian hemipteran predatory bugs control Tuta absoluta? IOBC-WPRS Bull 80:63–67

Google Scholar 

Bueno VHP, van Lenteren JC, Lins JC, Calixto AM, Montes FC, Silva DB, Santiago LD, Pérez LM (2013) New records of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) predation by Brazilian Hemipteran predatory bugs. J Appl Entomol 137:29–34. https://doi.org/10.1111/jen.12017

Article  Google Scholar 

Bueno VHP, Calixto AM, Montes FC, van Lenteren JC (2018) Population growth parameters of three Neotropical mirid predators (Hemiptera: Miridae) at five temperatures on tobacco with Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) eggs as food. Israel J Entomol 48:1–22

Google Scholar 

Calvo FJ, Lorente MJ, Stansly PA, Belda JE (2012) Preplant release of Nesidiocoris tenuis and supplementary tactics for control of Tuta absoluta and Bemisa tabaci in greenhouse tomato. Entomol Exp Appl 143:111–119. https://doi.org/10.1111/j.1570-7458.2012.01238.x

Article  Google Scholar 

Cremonez PSG, Pinheiro DDO, Falleiros ÂMF, Neves PMOJ (2017) Performance of reproductive system of Dichelops melacanthus (Hemiptera: Pentatomidae) subjected to buprofezin and pyriproxyfen: morphological analysis of ovarioles and testes. Semin Cienc Agrar 38:2279–2292. https://doi.org/10.5433/1679-0359.2017v38n4Supl1p2279

Article  CAS  Google Scholar 

Desneux N, Han P, Mansour R, Arnó J, Brévault T et al (2022) Integrated pest management of Tuta absoluta: practical implementations across different world regions. J Pest Sci 95:17–39. https://doi.org/10.1007/s10340-021-01442-8

Article  Google Scholar 

Drobnjaković T, Marčić D (2020) Acute toxity and sublethal effects of pymetrozine on the whitefly parasitoid Encarsia formosa Gahan. Pestic Phytomed (belgrade) 35:81–95. https://doi.org/10.2298/pif2002081d

Article  CAS  Google Scholar 

Guedes RNC, Cutler GC (2014) Insecticide-induced hormesis and arthropod pest management. Pest Manag Sci 70:690–697. https://doi.org/10.1002/ps.3669

Article  CAS  PubMed  Google Scholar 

Hasan F, Mahboob S, Al-Ghanim KA, Al-Misned F, Dhillon MK, Manzoor U (2020) Ecotoxicity of neonicotinoids and diamides on population growth performance of Zygogramma bicolorata (Coleoptera: Chrysomelidae). Ecotoxicol Environ Saf 203:110998. https://doi.org/10.1016/j.ecoenv.2020.110998

Article  CAS  PubMed  Google Scholar 

Ishaaya I, Mendelson Z, Melamed-Madjar V (1988) Effect of Buprofezin on embryo genesis and progeny formation of sweet potato whitefly (Homoptera: Aleyrodidae). J Econ Entomol 81(3):781–784. https://doi.org/10.1093/jee/81.3.781

Article  CAS  Google Scholar 

Izawa Y, Uchida M, Sugimoto T, Asai T (1985) Inhibition of chitin biosynthesis by buprofezin analogs in relation to their activity controlling Nilaparvata lugens Stål. Pestic Biochem Physiol 24:343–347. https://doi.org/10.1016/0048-3575(85)90145-2

Article  CAS  Google Scholar 

Jiang J, Liu X, Zhang Z, Liu F, Mu W (2019) Lethal and sublethal impact of sulfoxaflor on three species of Trichogramma parasitoid wasps (Hymenoptera: Trichogrammatidae). Biol Control 134:32–37. https://doi.org/10.1016/j.biocontrol.2019.04.001

Article  CAS  Google Scholar 

Lee CE, Gelembiuk GW (2008) Evolutionary origins of invasive populations. Evolut Appl 1:427–448. https://doi.org/10.1111/j.1752-4571.2008.00039.x

Article  Google Scholar 

Lövei GL, Andow DA, Arpaia S (2009) Transgenic insecticidal crops and natural enemies: a detailed review of laboratory studies. Environ Entomol 38:293–306. https://doi.org/10.1603/022.038.0201

Article  PubMed  Google Scholar 

Lu K, Song Y, Zeng R (2021) The role of cytochrome P450-mediated detoxification in insect adaptation to xenobiotics. Curr Opin Insect Sci 43:103–107. https://doi.org/10.1016/j.cois.2020.11.004

Article  PubMed  Google Scholar 

Matioli TF, Zanardi OZ, Yamamoto PT (2019) Impacts of seven insecticides on Cotesia flavipes (Cameron) (Hymenoptera: Braconidae). Ecotoxicology 28:1210–1219. https://doi.org/10.1007/s10646-019-02129-8

Article  CAS  Google Scholar 

Matioli TF, da Silva MR, de Bastos Pazini de JB, Barroso G, Vieira JGA, Yamamoto PT (2021) Risk assessment of insecticides used in tomato to control whitefly on the predator Macrolophus basicornis (Hemiptera: Miridae). Insects 12:092. https://doi.org/10.3390/insects12121092

Article  Google Scholar 

Mendel Z, Blumberg D, Ishaaya I (1994) Effects of some insect growth regulators on natural enemies of scale insects (Hom.: Coccoidea). Entomophaga 39:199–209

Article  CAS  Google Scholar 

Mills NJ, Beers EH, Shearer PW, Unruh TR, Amarasekare KG (2016) Comparative analysis of pesticide effects on natural enemies in western orchards: a synthesis of laboratory bioassay data. Biol Control 102:17–25. https://doi.org/10.1016/j.biocontrol.2015.05.006

Article  CAS  Google Scholar 

Passos LC, Soares MA, Costa MA, Michaud JP, Freire BC, Carvalho GA (2017) Physiological susceptibility of the predator Macrolophus basicornis (Hemiptera: Miridae) to pesticides used to control of Tuta absoluta (Lepidoptera: Gelechiidae). Biocontrol Sci Technol 27:1082–1095

Article  Google Scholar 

Passos LC, Soares MA, Collares LJ, Malagoli I, Desneux N, Carvalho GA (2018) Lethal, sublethal and transgenerational effects of insecticides on Macrolophus basicornis, predator of Tuta absoluta. Entomol Gen 38:127–143. https://doi.org/10.1127/entomologia/2018/0744

Article  Google Scholar 

Querino R, Zucchi RA (2011) Guia de identificação de Trichogramma para o Brasil. Brasília, Brasil

Google Scholar 

R Development Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria  https://www.R-project.org/

Rohner P, Moczek AP (2021) Evolutionary and plastic variation in larval growth and digestion reveal the complex underpinnings of size and age at maturation in dung beetles. Ecol Evol 21:15098–15110. https://doi.org/10.1002/ece3.8192

Article  Google Scholar 

Selby TP, Lahm GP, Stevenson TM, Hughes KA, Cordova D, Annan IB, Barry JD, Benner EA, Currie MJ, Pahutski TF (2013) Discovery of cyantraniliprole, a potent and selective anthranilic diamide ryanodine receptor activator with cross-spectrum insecticidal activity. Bioorg Med Chem Lett 23:6341–6345. https://doi.org/10.1016/j.bmcl.2013.09.076

Article  CAS  PubMed  Google Scholar 

Silva WM, Berger M, Bass C, Williamson M, Moura DMN, Ribeiro LMS, Siqueira HAA (2016) Mutation (G275E) of the nicotinic acetylcholine receptor α6 subunit is associated with high levels of resistance to spinosyns in Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Pestic Biochem Physiol 131:1–8. https://doi.org/10.1016/j.pestbp.2016.02.006

Article  CAS  PubMed  Google Scholar 

Soares MA, Passos LC, Campos MR, Collares LJ, Desneux N, Carvalho GA (2019) Side effects of insecticides commonly used against Tuta absoluta on the predator Macrolophus basicornis. J Pest Sci 92:1447–1456. https://doi.org/10.1007/s10340-019-01099-4

Article  Google Scholar 

Soares MA, Carvalho GA, Campos MR, Passos LC, Haro MM, Lavoir AV, Biondi A, Zappalà L, Desneux N (2020) Detrimental sublethal effects hamper the effective use of natural and chemical pesticides in combination with a key natural enemy of Bemisia tabaci on tomato. Pest Manag Sci 76:3551–3559. https://doi.org/10.1002/ps.5927

Article  CAS  PubMed  Google Scholar 

Thorne AD, Pexton JJ, Dytham C, Mayhew PJ (2006) Small body size in an insect shifts development, prior to adult eclosion, towards early reproduction. Proc R Soc B Biol Sci 273:1099–1103. https://doi.org/10.1098/rspb.2005.3416

Article  Google Scholar 

Van Lenteren JC (2012) The state of commercial augmentative biological control: Plenty of natural enemies, but a frustrating lack of uptake. Biocontrol 57:1–20. https://doi.org/10.1007/s10526-011-9395-1

Article  Google Scholar 

Van Lenteren JC, Hemerik L, Lins JC, Bueno VHP (2016) Functional responses of three Neotropical mirid predators to eggs of Tuta absoluta on tomato. Insects 7:34

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif