Abro Zewdu, Kimathi Emily, de Groote Hugo, Tefera Tadele, Sevgan Subramanian, Niassy Saliou, Kassie Menale (2021) Socioeconomic and impacts of fall armyworm in Ethiopia. PLoS One 16(11):e0257736. https://doi.org/10.1371/journal.pone.0257736
Article CAS PubMed PubMed Central Google Scholar
Adan M, Tonnang HE, Greve K, Borgemeister C, Goergen G (2023) Use of time series normalized difference vegetation index (NDVI) to monitor fall armyworm (Spodoptera frugiperda) damage on maize production systems in Africa. Geocarto Int 38(1):2186492
Agboyi LK, Goergen G, Beseh P, Mensah SA, Clottey VA, Glikpo R, Buddie A, Cafà G, Offord L, Day R, Rwomushana I, Kenis M (2020) Parasitoid complex of fall armyworm, Spodoptera Frugiperda, in Ghana and Benin. Insects 11(2):68. https://doi.org/10.3390/insects11020068
Article PubMed PubMed Central Google Scholar
Aria M, Cuccurullo C (2017) Bibliometrix: an R-Tool for comprehensive science mapping analysis. J Informetr 11(4):959–975. https://doi.org/10.1016/j.joi.2017.08.007
Arthurs S, Dara SK (2019) Microbial biopesticides for invertebrate pests and their markets in the United States. J Invertebr Pathol 165:13–21
Banerjee R, Bortoli CPD, Huang F, Lamour K, Meagher R, Buntin D, Xinzhi Ni FPF, Reay-Jones SS, Jurat-Fuentes JL (2022) Large genomic deletion linked to field-evolved resistance to Cry1F corn in fall armyworm (Spodoptera Frugiperda) from Florida. Sci Rep 12(1):13580. https://doi.org/10.1038/s41598-022-17603-3
Article CAS PubMed PubMed Central Google Scholar
Barcellos GA, Hanich MR, Pretto VE, Weschenfelder MAG, Horikoshi RJ, Dourado PM, Ovejero RFL, Berger GU, Martinelli S, Head GP, Bernardi O (2023) Characterizing the lethal and sub-lethal effects of genetically modified soybean expressing Cry1A.105, Cry2Ab2, and Cry1Ac insecticidal proteins against Spodoptera species (Lepidoptera: Noctuidae) in Brazil. Pest Manag Sci 79(2):548–559. https://doi.org/10.1002/ps.7225
Article CAS PubMed Google Scholar
Biondi A, Mommaerts V, Smagghe G, Viñuela E, Zappalà L, Desneux N (2012) The non-target impact of spinosyns on beneficial arthropods. Pest Manag Sci 68(12):1523–1536. https://doi.org/10.1002/ps.3396
Borgatti SP, Ofem B (2010) Social network theory and analysis. Soc Netw Theory Educ Change 17:29
Callon M, Courtial JP, Turner WA, Bauin S (1983) From translations to problematic networks: an introduction to co-word analysis. Soc Sci Inf 22(2):191–235. https://doi.org/10.1177/053901883022002003
Camacho D, Panizo-LLedot A, Bello-Orgaz G, Gonzalez-Pardo A, Cambria E (2020) The four dimensions of social network analysis: an overview of research methods, applications, and software tools. Information Fusion 63:88–120
Campos JM, Martínez LC, Plata-Rueda A, Carneiro LS, Weigand W, Wilcken CF, Zanuncio JC, Serrão JE (2022) Non-proteinaceous salivary compounds of a predatory bug cause histopathological and cytotoxic effects in prey. Toxicon 213:76–82. https://doi.org/10.1016/j.toxicon.2022.04.013
Article CAS PubMed Google Scholar
Carvalho RA, Omoto C, Field LM, Williamson MS, Bass C (2013) Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera Frugiperda. PLoS ONE 8(4):e62268. https://doi.org/10.1371/journal.pone.0062268
Article CAS PubMed PubMed Central Google Scholar
Chakroun M, Banyuls N, Bel Y, Escriche B, Ferré J (2016) Bacterial vegetative insecticidal proteins (Vip) from entomopathogenic bacteria. Microbiol Mol Biol Rev 80(2):329–350. https://doi.org/10.1128/mmbr.00060-15
Chen X, Palli SR (2023) Development of multiple transgenic CRISPR/Cas9 methods for genome editing in the fall armyworm, Spodoptera frugiperda. J Pest Sci 96(4):1637–1650
Chen W, Li Y, Zhang C, Jia F, Zhang M, Wang M, ... & Zhang L (2023) Cold storage effects on biological parameters of Telenomus remus, a promising egg parasitoid of Spodoptera frugiperda, reared on Spodoptera litura eggs. J Pest Sci 96(4):1365–1378
Chimweta M, Nyakudya IW, Jimu L, Mashingaidze AB (2020) Fall armyworm [Spodoptera Frugiperda (J.E. Smith)] damage in maize: management options for flood-recession cropping smallholder farmers. Int J Pest Manag 66(2):142–154. https://doi.org/10.1080/09670874.2019.1577514
Day R, Abrahams P, Bateman M, Beale T, Clottey V, Cock M, Colmenarez Y, Corniani N, Early R, Godwin J, Gomez J, Moreno PG, Murphy ST, Oppong-Mensah B, Phiri N, Pratt C, Silvestri S, Witt A (2017) Fall armyworm: impacts and implications for Africa. Outlooks Pest Manag 28(5):196–201. https://doi.org/10.1564/v28_oct_02
Du, Lei, Yaqin Sun, Shuo Chen, Jiedong Feng, Yindi Zhao, Zhigang Yan, Xuewei Zhang, and Yuchen Bian. 2022. “A novel object detection model based on faster R-CNN for Spodoptera Frugiperda according to feeding trace of corn leaves.” Agric. (Switz.)12(2):248. https://doi.org/10.3390/agriculture12020248
EPPO (2020) Spodoptera Frugiperda (LAPHFR)[Datasheet]| EPPO Global Database. EPPO Global Database https://gd.eppo.int/taxon/LAPHFR/distribution. Retrieved (https://gd.eppo.int/taxon/LAPHFR/datasheet)
FAO (2023) Impact of COVID-19 on fall armyworm control activities, https://www.Fao.Org/Fall-Armyworm/En,27-12-2022. Retrieved (https://www.fao.org/fall-armyworm/global-action/en/).
Farias JR, Andow DA, Horikoshi RJ, Sorgatto RJ, Fresia P, Cesar A, dos Santos, and Celso Omoto. (2014) Field-evolved resistance to Cry1F Maize by Spodoptera Frugiperda (Lepidoptera: Noctuidae) in Brazil. J Crop Prot 64:150–158. https://doi.org/10.1016/j.cropro.2014.06.019
Ferreira Filho JBDS, Alves LRA, Gottardo LCB, Georgino M (2010) Dimensionamento do custo econômico representado por Spodoptera Frugiperdana cultura do milho no Brasil. In: Tecnologias, desenvolvimento e integração social; anais. Brasília: SOBER
Franceschet M (2011) Collaboration in computer science: a network science approach. JASIST 62(10):1992–2012. https://doi.org/10.1002/asi.21614
Freeman LC (1978) Centrality in social networks conceptual clarification. Soc Netw 1(3):215–239. https://doi.org/10.1016/0378-8733(78)90021-7
Garlet Cínthia G, Muraro Dionei S, Godoy Daniela N, Cossa Gisele E, Hanich Manoela R, Stacke Regis F, Bernardi Oderlei (2022) Assessing fitness costs of the resistance of Spodoptera Frugiperda (Lepidoptera: Noctuidae) to pyramided Cry1 and Cry2 insecticidal proteins on different host plants. Bull Entom Res Lond 112(5):575–83. https://doi.org/10.1017/S0007485321001152
Goergen G, Lava Kumar P, Sankung SB, Togola A, Tamò M (2016) First report of outbreaks of the fall armyworm Spodoptera Frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE 11(10):e0165632. https://doi.org/10.1371/journal.pone.0165632
Article CAS PubMed PubMed Central Google Scholar
Gouin A, Bretaudeau A, Nam K, Gimenez S, Aury J-M, Duvic B, … Darboux I (2017) Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Sci Rep 7(1). https://doi.org/10.1038/s41598-017-10461-4
Guimapi RA, Niassy S, Mudereri BT, Abdel-Rahman EM, Tepa-Yotto GT, Subramanian S, Mohamed SA, Thunes KH, Kimathi E, Agboka KM, Tamo M (2022) Harnessing data science to improve integrated management of invasive pest species across Africa: an application to Fall armyworm (Spodoptera frugiperda)(JE Smith)(Lepidoptera: Noctuidae). Glob Ecol Conserv 35:e02056
Guoping Li, Tingjie Ji, Shengyuan Zhao, Hongqiang Feng, and Kongming %J Plants Wu. (2022) “High-dose assessment of transgenic insect-resistant maize events against major Lepidopteran pests in China.” 11(22):3125
Gutirrez-Moreno R, Mota-Sanchez D, Blanco CA, Whalon ME, Henry Terán-Santofimio J, Rodriguez-Maciel C, Difonzo C (2019) Field-evolved resistance of the fall armyworm (Lepidoptera: Noctuidae) to synthetic insecticides in Puerto Rico and Mexico. J Econ Entomol 112(2):792–802. https://doi.org/10.1093/jee/toy372
Han Pu, Shi J, Li X, Wang D, Shen Si, Xinning Su (2014) International collaboration in LIS: global trends and networks at the country and institution level. Scientometrics 98(1):53–72. https://doi.org/10.1007/s11192-013-1146-x
Hirsch JE (2005) An index to quantify an individual’s scientific research output. Proc Natl Acad Sci 102(46):16569–16572
Article CAS PubMed PubMed Central Google Scholar
Huang F, Qureshi JA, Meagher RL, Reisig DD, Head GP, Andow DA, Ni X, David Kerns G, Buntin D, Niu Y, Yang F, Dangal V (2014) Cry1F resistance in fall armyworm Spodoptera Frugiperda: single gene versus pyramided Bt maize. PLoS ONE 9(11):e112958. https://doi.org/10.1371/journal.pone.0112958
Article CAS PubMed PubMed Central Google Scholar
Jin J, Liu Y, Liang X, Pei Y, Wan F, Guo J (2022) Regulatory mechanism of transcription factor AhHsf modulates AhHsp70 transcriptional expression enhancing heat tolerance in Agasicles Hygrophila (Coleoptera: Chrysomelidae). Int J Mol Sci 23(6):3210. https://doi.org/10.3390/ijms23063210
Article CAS PubMed PubMed Central Google Scholar
Kenis M, du Plessis H, Van den Berg J, Ba MN, Goergen G, Kwadjo KE, Baoua I, Tefera T, Buddie A, Cafà G, Offord L, Rwomushana I, Polaszek A (2019) Telenomus remus, a candidate parasitoid for the biological control of Spodoptera Frugiperda in Africa, is already present on the continent. Insects 10(4):92. https://doi.org/10.3390/insects10040092
Article PubMed PubMed Central Google Scholar
Levy HC, Garcia-Maruniak A, Maruniak JE (2002) Strain identification of Spodoptera frugiperda (Lepidoptera: Noctuidae) insects and cell line: PCR-RFLP of cytochrome oxidase C subunit I gene. Fla Entomol 85:186–190
Li X, Sun C, Meng H, Ma X, Huang G, Xu X (2022) A novel efficient method for land cover classification in fragmented agricultural landscapes using sentinel satellite imagery. J Remote Sens 14(9):2045
Liu, Huan, Yumeng Cheng, Qian Wang, Xiaobei Liu, Yu Fu, Yong Zhang, and Julian Chen. (2022) “Push–pull plants in wheat intercropping system to manage Spodoptera Frugiperda.” J Pest Sci 1–15. https://doi.org/10.1007/s10340-022-01547-8
Luginbill P (1928) The fall army worm. Nature 121(3054):770–771
Maggio DH, Rossetti VZ, Santos LMA, Carmezini FL, Corrêa AS (2022) A molecular marker to identify Spodoptera Frugiperda (JE Smith) DNA in predators’ gut content. Insects 13(7):635. https://doi.org/10.3390/insects13070635
Article PubMed PubMed Central Google Scholar
Malaquias JB, Ferreira CP, de Francisco S, Ramalho WAC, Godoy JKS, Pachú CO, de Dyrson O, Neto A, Padovez FEO, Silva LB (2022) Modeling the resistance evolution to insecticides driven by Lepidopteran species competition in cotton, soybean, and corn crops. Biology 11(9):1354. https://doi.org/10.3390/biology11091354
Article PubMed PubMed Central Google Scholar
Marshakova SI (1973) System of document connections based on references. Scientific and Technical Information Serial of VINITI 6(2):3
Montezano DG, Specht A, Sosa-Gómez DR, Roque-Specht VF, Sousa-Silva JC, Paula-Moraes SV, Peterson JA, Hunt TE (2018) Host plants of Spodoptera Frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr Entomol 26(2):286–300
Muraro DS, Salmeron E, Cruz JVS, Amaral FSA, Guidolin AS, Nascimento ARB, Malaquias JB, Bernardi O, Omoto C (2022) Evidence of field-evolved resistance in Spodoptera Frugiperda (Lepidoptera: Noctuidae) to emamectin benzoate in Brazil. J Crop Prot 162:106071. https://doi.org/10.1016/j.cropro.2022.106071
Nagoshi RN (2010) The fall armyworm triose phosphate isomerase (Tpi) gene as a marker of strain identity and interstrain mating. Ann Entomol Soc Am 103:283–292
留言 (0)