CRISPR/Cas9-mediated base editors and their prospects for mitochondrial genome engineering

Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346:1258096.

Article  PubMed  Google Scholar 

Cring MR, Sheffield VC. Gene therapy and gene correction: targets, progress, and challenges for treating human diseases. Gene Ther. 2022;29:3–12.

Davis L, Maizels N. Two distinct pathways support gene correction by single-stranded donors at DNA nicks. Cell Rep. 2016;17:1872–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Azhagiri MKK, Babu P, Venkatesan V, Thangavel S. Homology-directed gene-editing approaches for hematopoietic stem and progenitor cell gene therapy. Stem Cell Res Ther. 2021;12:1–12.

Article  Google Scholar 

Eghbalsaied S, Kues W. CRISPR/Cas9-mediated target knock-in of large constructs using nocodazole and RNase HII. Sci Rep. 2023;13:2690.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu M, Zhang W, Xin C, Yin J, Shang Y, Ai C, et al. Global detection of DNA repair outcomes induced by CRISPR–Cas9. Nucleic Acids Res. 2021;49:8732–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tao J, Wang Q, Mendez-Dorantes C, Burns KH, Chiarle R. Frequency and mechanisms of LINE-1 retrotransposon insertions at CRISPR/Cas9 sites. Nat Commun. 2022;13:3685.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tao J, Bauer DE, Chiarle R. Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing. Nat Commun. 2023;14:212.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR–Cas nucleases, base editors, transposases, and prime editors. Nat Biotechnol. 2020;38:824–44.

Article  CAS  PubMed  Google Scholar 

Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma Y, Zhang J, Yin W, Zhang Z, Song Y, Chang X. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat Methods. 2016;13:1029–35.

Article  CAS  PubMed  Google Scholar 

Hess GT, Frésard L, Han K, Lee CH, Li A, Cimprich KA, et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat Methods. 2016;13:1036–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. 2016;353:aaf8729.

Article  PubMed  Google Scholar 

Li J, Sun Y, Du J, Zhao Y, Xia L. Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Molecular plant. 2017;10:526–9.

Article  CAS  PubMed  Google Scholar 

Ren B, Yan F, Kuang Y, Li N, Zhang D, Lin H, et al. A CRISPR/Cas9 toolkit for efficient targeted base editing to induce genetic variations in rice. Sci China Life Sci. 2017;60:516–9.

Article  PubMed  Google Scholar 

Zafra MP, Schatoff EM, Katti A, Foronda M, Breinig M, Schweitzer AY, et al. Optimized base editors enable efficient editing in cells, organoids and mice. Nat Biotechnol. 2018;36:888–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou C, Sun Y, Yan R, Liu Y, Zuo E, Gu C, et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature. 2019;571:275–8.

Article  CAS  PubMed  Google Scholar 

Lei Z, Meng H, Lv Z, Liu M, Zhao H, Wu H, et al. Detect-seq reveals out-of-protospacer editing and target-strand editing by cytosine base editors. Nat Methods. 2021;18:643–51.

Article  CAS  PubMed  Google Scholar 

Ren B, Yan F, Kuang Y, Li N, Zhang D, Zhou X, et al. Improved base editor for efficiently inducing genetic variations in rice with CRISPR/Cas9-guided hyperactive hAID mutant. Mol Plant. 2018;11:623–6.

Article  CAS  PubMed  Google Scholar 

Lee S, Ding N, Sun Y, Yuan T, Li J, Yuan Q, et al. Single C-to-T substitution using engineered APOBEC3G-nCas9 base editors with minimum genome-and transcriptome-wide off-target effects. Sci Adv. 2020;6:eaba1773.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thuronyi BW, Koblan LW, Levy JM, Yeh W-H, Zheng C, Newby GA, et al. Continuous evolution of base editors with expanded target compatibility and improved activity. Nat Biotechnol. 2019;37:1070–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Esvelt KM, Carlson JC, Liu DR. A system for the continuous directed evolution of biomolecules. Nature. 2011;472:499–503.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Richter MF, Zhao KT, Eton E, Lapinaite A, Newby GA, Thuronyi BW, et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol. 2020;38:883–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Badran AH, Liu DR. Development of potent in vivo mutagenesis plasmids with broad mutational spectra. Nat Commun. 2015;6:1–10.

Article  Google Scholar 

Zhao D, Li J, Li S, Xin X, Hu M, Price MA, et al. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat Biotechnol. 2021;39:35–40.

Article  CAS  PubMed  Google Scholar 

Sun N, Zhao D, Li S, Zhang Z, Bi C, Zhang X. Reconstructed glycosylase base editors GBE2. 0 with enhanced C-to-G base editing efficiency and purity. Mol Ther. 2022;30:2452–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dong X, Yang C, Ma Z, Chen M, Zhang X, Bi C. Enhancing glycosylase base-editor activity by fusion to transactivation modules. Cell Rep. 2022;40:111090.

Article  CAS  PubMed  Google Scholar 

Tong H, Liu N, Wei Y, Zhou Y, Li Y, Wu D, et al. Programmable deaminase-free base editors for G-to-Y conversion by engineered glycosylase. Natl Sci Rev. 2023;10:nwad143.

Article  PubMed  PubMed Central  Google Scholar 

Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, et al. Programmable base editing of A• T to G• C in genomic DNA without DNA cleavage. Nature. 2017;551:464–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hough RF, Bass BL. Purification of the Xenopus laevis double-stranded RNA adenosine deaminase. J Biol Chem. 1994;269:9933–9.

Article  CAS  PubMed  Google Scholar 

Bass B, Nishikura K, Keller W, Seeburg PH, Emeson R, O’connell M, et al. A standardized nomenclature for adenosine deaminases that act on RNA. RNA. 1997;3:947.

CAS  PubMed  PubMed Central  Google Scholar 

Zheng Y, Lorenzo C, Beal PA. DNA editing in DNA/RNA hybrids by adenosine deaminases that act on RNA. Nucleic Acids Res. 2017;45:3369–77.

CAS  PubMed  PubMed Central  Google Scholar 

Kim J, Malashkevich V, Roday S, Lisbin M, Schramm VL, Almo SC. Structural and kinetic characterization of Escherichia coli TadA, the wobble-specific tRNA deaminase. Biochemistry. 2006;45:6407–16.

Article  CAS  PubMed  Google Scholar 

Yan F, Kuang Y, Ren B, Wang J, Zhang D, Lin H, et al. Highly efficient A· T to G· C base editing by Cas9n-guided tRNA adenosine deaminase in rice. Mol Plant. 2018;11:631–4.

Article  CAS  PubMed  Google Scholar 

Yang L, Zhang X, Wang L, Yin S, Zhu B, Xie L, et al. Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants. Protein Cell. 2018;9:814–9.

Article  PubMed  PubMed Central  Google Scholar 

Neugebauer ME, Hsu A, Arbab M, Krasnow NA, McElroy AN, Pandey S, et al. Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity. Nat Biotechnol. 2023;41:673–85.

Gaudelli NM, Lam DK, Rees HA, Solá-Esteves NM, Barrera LA, Born DA, et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat Biotechnol. 2020;38:892–900.

Article  CAS  PubMed  Google Scholar 

Lapinaite A, Knott GJ, Palumbo CM, Lin-Shiao E, Richter MF, Zhao KT, et al. DNA capture by a CRISPR-Cas9–guided adenine base editor. Science. 2020;369:566–71.

Article 

留言 (0)

沒有登入
gif