Update on the Use of Pulse Wave Velocity to Measure Age-Related Vascular Changes

Ji C, Gao J, Huang Z, Chen S, Wang G, Wu S, et al. Estimated pulse wave velocity and cardiovascular events in Chinese. Int J Cardiol Hypertens. 2020;7:100063.

Article  PubMed  PubMed Central  Google Scholar 

Vlachopoulos C, Terentes-Printzios D, Laurent S, Nilsson PM, Protogerou AD, Aznaouridis K, et al. Association of estimated pulse wave velocity with survival: a secondary analysis of SPRINT. JAMA Netw Open. 2019;2:e1912831.

Article  PubMed  PubMed Central  Google Scholar 

Vianna CA, Horta BL, Gonzalez MC, França GVA, Gigante DP, Barros FL. Association of pulse wave velocity with body fat measures at 30 y of age. Nutrition. 2019;61:38–42.

Article  PubMed  Google Scholar 

Podrug M, Šunjić B, Bekavac A, Koren P, Đogaš V, Mudnić I, et al. The effects of experimental, meteorological, and physiological factors on short-term repeated pulse wave velocity measurements, and measurement difficulties: a randomized crossover study with two devices. Front Cardiovasc Med. 2023;9:993971.

Article  PubMed  PubMed Central  Google Scholar 

Shih Y-H, Wu S-Y, Yu M, Huang S-H, Lee C-W, Jiang M-J, et al. Hypertension accelerates Alzheimer’s disease-related pathologies in pigs and 3xTg mice. Front Aging Neurosci [Internet]. 2018 [cited 2023 Jun 8];10. Available from: https://www.frontiersin.org/articles/10.3389/fnagi.2018.00073.

Sutton-Tyrrell K, Najjar SS, Boudreau RM, Venkitachalam L, Kupelian V, Simonsick EM, et al. Elevated aortic pulse wave velocity, a marker of arterial stiffness, predicts cardiovascular events in well-functioning older adults. Circulation. 2005;111:3384–90.

Article  PubMed  Google Scholar 

The Reference Values for Arterial Stiffness’ Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values.’ Eur Heart J. 2010;31:2338–50.

Wu S, Jin C, Li S, Zheng X, Zhang X, Cui L, et al. Aging, arterial stiffness, and blood pressure association in Chinese adults. Hypertension. 2019;73:893–9.

Article  PubMed  CAS  Google Scholar 

Schmidt KMT, Hansen KM, Johnson AL, Gepner AD, Korcarz CE, Fiore MC, et al. Longitudinal effects of cigarette smoking and smoking cessation on aortic wave reflections, pulse wave velocity, and carotid artery distensibility. J Am Heart Assoc. 2019;8:e013939.

Article  PubMed  PubMed Central  Google Scholar 

Styczynski G, Cienszkowska K, Ludwiczak M, Szmigielski C. Age-related values of aortic pulse wave velocity in healthy subjects measured by Doppler echocardiography. J Hum Hypertens. 2021;35:1081–7.

Article  PubMed  CAS  Google Scholar 

Campos-Arias D, De Buyzere ML, Chirinos JA, Rietzschel ER, Segers P. Longitudinal changes of input impedance, pulse wave velocity, and wave reflection in a middle-aged population. Hypertension. 2021;77:1154–65.

Article  PubMed  CAS  Google Scholar 

Haam J-H, Kim Y-S, Cho D-Y, Chun H, Choi S-W, Lee YK, et al. Elevated levels of urine isocitrate, hydroxymethylglutarate, and formiminoglutamate are associated with arterial stiffness in Korean adults. Sci Rep. 2021;11:10180.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Elzinga G, Westerhof N. Pressure and flow generated by the left ventricle against different impedances. Circ Res. 1973;32:178–86.

Article  PubMed  CAS  Google Scholar 

Ross J. Afterload mismatch and preload reserve: a conceptual framework for the analysis of ventricular function. Prog Cardiovasc Dis. 1976;18:255–64.

Article  PubMed  Google Scholar 

Sunagawa K, Maughan WL, Burkhoff D, Sagawa K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol. 1983;245:H773-780.

PubMed  CAS  Google Scholar 

Nichols WW, O’Rourke MF, Avolio AP, Yaginuma T, Murgo JP, Pepine CJ, et al. Effects of age on ventricular-vascular coupling. Am J Cardiol. 1985;55:1179–84.

Article  PubMed  CAS  Google Scholar 

Asanoi H, Sasayama S, Kameyama T. Ventriculoarterial coupling in normal and failing heart in humans. Circ Res. 1989;65:483–93.

Article  PubMed  CAS  Google Scholar 

Kass DA, Kelly RP. Ventriculo-arterial coupling: concepts, assumptions, and applications. Ann Biomed Eng. 1992;20:41–62.

Article  PubMed  CAS  Google Scholar 

Chen CH, Nakayama M, Nevo E, Fetics BJ, Maughan WL, Kass DA. Coupled systolic-ventricular and vascular stiffening with age: implications for pressure regulation and cardiac reserve in the elderly. J Am Coll Cardiol. 1998;32:1221–7.

Article  PubMed  CAS  Google Scholar 

Kawaguchi M, Hay I, Fetics B, Kass DA. Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation. 2003;107:714–20.

Article  PubMed  Google Scholar 

Borlaug BA, Kass DA. Ventricular-vascular interaction in heart failure. Heart Fail Clin. 2008;4:23–36.

Article  PubMed  PubMed Central  Google Scholar 

Vlachopoulos C, O’Rourke M, Nichols WW. McDonald’s blood flow in arteries: theoretical, experimental and clinical principles. CRC press; 2011.

Davis MJ, Gore RW. Determinants of cardiac function: simulation of a dynamic cardiac pump for physiology instruction. Adv Physiol Educ. 2001;25:13–35.

Article  PubMed  CAS  Google Scholar 

Terminology and Diagnostic Criteria Committee of The Japan Society of Ultrasonics in Medicine. Standard measurement of cardiac function indexes. J Med Ultrason. 2006;33:123–7.

Park JJ, Park J-B, Park J-H, Cho G-Y. Global longitudinal strain to predict mortality in patients with acute heart failure. J Am Coll Cardiol. 2018;71:1947–57.

Article  PubMed  Google Scholar 

Tona F, Zanatta E, Montisci R, Muraru D, Beccegato E, De Zorzi E, et al. Higher ventricular-arterial coupling derived from three-dimensional echocardiography is associated with a worse clinical outcome in systemic sclerosis. Pharmaceuticals (Basel). 2021;14:646.

Article  PubMed  CAS  Google Scholar 

Ikonomidis I, Aboyans V, Blacher J, Brodmann M, Brutsaert DL, Chirinos JA, et al. The role of ventricular-arterial coupling in cardiac disease and heart failure: assessment, clinical implications and therapeutic interventions. A consensus document of the European Society of Cardiology Working Group on Aorta & Peripheral Vascular Diseases, European Association of Cardiovascular Imaging, and Heart Failure Association. Eur J Heart Fail. 2019;21:402–24.

Alhakak AS, Teerlink JR, Lindenfeld J, Böhm M, Rosano GMC, Biering-Sørensen T. The significance of left ventricular ejection time in heart failure with reduced ejection fraction. Eur J Heart Fail. 2021;23:541–51.

Article  PubMed  Google Scholar 

Tsao CW, Lyass A, Larson MG, Levy D, Hamburg NM, Vita JA, et al. Relation of central arterial stiffness to incident heart failure in the community. J Am Heart Assoc. 2015;4:e002189.

Article  PubMed  PubMed Central  Google Scholar 

Lopatin Y, Coats AJ. The management of heart failure in kidney and urinary tract syndromes. International Cardiovascular Forum Journal [Internet]. 2017 [cited 2022 Nov 10];10. Available from: https://icfj.journals.publicknowledgeproject.org/index.php/icfj/article/view/450.

Park K-T, Kim H-L, Oh S, Lim W-H, Seo J-B, Chung W-Y, et al. Association between reduced arterial stiffness and preserved diastolic function of the left ventricle in middle-aged and elderly patients. J Clin Hypertens (Greenwich). 2017;19:620–6.

Article  PubMed  Google Scholar 

Lam CSP, Roger VL, Rodeheffer RJ, Bursi F, Borlaug BA, Ommen SR, et al. Cardiac structure and ventricular-vascular function in persons with heart failure and preserved ejection fraction from Olmsted County. Minnesota Circulation. 2007;115:1982–90.

Article  PubMed  Google Scholar 

Hundley WG, Kitzman DW, Morgan TM, Hamilton CA, Darty SN, Stewart KP, et al. Cardiac cycle-dependent changes in aortic area and distensibility are reduced in older patients with isolated diastolic heart failure and correlate with exercise intolerance. J Am Coll Cardiol. 2001;38:796–802.

Article  PubMed  CAS  Google Scholar 

Weber T. Systolic and diastolic function as related to arterial stiffness. Artery Research. 2010;4:122–7.

Article  Google Scholar 

Zile MR, Baicu CF, Gaasch WH. Diastolic heart failure–abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med. 2004;350:1953–9.

Article  PubMed  CAS  Google Scholar 

Weber T. The role of arterial stiffness and central hemodynamics in heart failure. Int J Heart Fail. 2020;2:209–30.

Article  PubMed  PubMed Central  Google Scholar 

El Fol A, Ammar W, Sharaf Y, Youssef G. The central arterial stiffness parameters in decompensated versus compensated states of heart failure: a paired comparative cohort study. Egypt Heart J. 2022;74:2.

Article  PubMed  PubMed Central  Google Scholar 

Regnault V, Lagrange J, Pizard A, Safar ME, Fay R, Pitt B, et al. Opposite predictive value of pulse pressure and aortic pulse wave velocity on heart failure with reduced left ventricular ejection fraction: insights from an eplerenone post–acute myocardial infarction heart failure efficacy and survival study (EPHESUS) substudy. Hypertension. 2014;63:105–11.

Article  PubMed  CAS  Google Scholar 

Dohaei A, Taghavi S, Amin A, Rahimi S, Naderi N. Does aortic pulse wave velocity have any prognostic significance in advanced heart failure patients? J Cardiovasc Thorac Res. 2017;9:35–40.

Article  PubMed  PubMed Central  Google Scholar 

Antohi E, Chioncel O. Understanding cardiac systolic performance beyond left ventricular ejection fraction. Explor Med. 2020;1:75–84.

Article  Google Scholar 

Mitchell GF. Arterial stiffness and hypertension. Hypertension. 2014;64:210–4.

Article  PubMed  CAS  Google Scholar 

Kaess BM, Rong J, Larson MG, Hamburg NM, Vita JA, Levy D, et al. Aortic stiffness, blood pressure progression, and incident hypertension. JAMA. 2012;308:875–81.

留言 (0)

沒有登入
gif