Analysis of bioactive hispidulin: an anticancer flavone of Clerodendrum philippinum

Rout KK, Singh RK, Mishra SK (2011) Simultaneous quantification of two bioactive lupane triterpenoids from Diospyros melanoxylon stem bark. J Planar Chromatogr-Mod TLC 24:376–380. https://doi.org/10.1556/jpc.24.2011.5.3

Article  CAS  Google Scholar 

Rout KK, Mishra SK (2014) Development of a sensitive HPTLC method for quantification of nimbolide in azadirachta indica and its dosage form. J Chromatogr Sci 52:1089–1094. https://doi.org/10.1093/chromsci/bmt151

Article  CAS  PubMed  Google Scholar 

Karak P (2019) Biological activities of flavonoids: an overview. Int J Pharm Sci Res 4:1567–1574

Google Scholar 

Kelly EH, Anthony RT, Dennis JB (2002) Flavonoid antioxidants: chemistry, metabolism and structure–activity relationships. J Nutr Biochem 13:572–584. https://doi.org/10.1016/s0955-2863(02)00208-5

Article  Google Scholar 

Pandey AK, Mishra AK, Mishra A (2012) Antifungal and antioxidative potential of oil and extracts derived from leaves of Indian spice plant Cinnamomum tamala. Cell Mol Biol 58:142–147. https://doi.org/10.1170/T933

Article  CAS  PubMed  Google Scholar 

Mishra A, Kumar S, Bhargava A, Sharma B, Pandey AK (2011) Studies on in vitro antioxidant and antistaphylococcal activities of some important medicinal plants. Cell Mol Biol 57:16–25. https://doi.org/10.1170/T897

Article  CAS  PubMed  Google Scholar 

Pandey AK, Mishra AK, Mishra A, Kumar S, Chandra A (2010) Therapeutic potential of C. zeylanicum extracts: an antifungal and antioxidant perspective. Int J Biol Med Res 1:228–233

Google Scholar 

Pan MH, Lai CS, Ho CT (2010) Anti-inflammatory activity of natural dietary flavonoids. Food Funct 1:15–31. https://doi.org/10.1039/c0fo00103a

Article  CAS  PubMed  Google Scholar 

Li BQ, Fu T, Dongyan Y, Mikovits JA, Ruscetti FW, Wang JM (2000) Flavonoid baicalin inhibits HIV-1 infection at the level of viral entry. Biochem Biophys Res Commun 276:534–538. https://doi.org/10.1006/bbrc.2000.3485

Article  CAS  PubMed  Google Scholar 

Critchfield JW, Butera ST, Folks TM (1996) Inhibition of HIV activation in latently infected cells by flavonoid compounds. AIDS Res Hum Retrovir 12:39–46. https://doi.org/10.1089/aid.1996.12.39

Article  CAS  PubMed  Google Scholar 

Tapas AR, Sakarkar DM, Kakde RB (2008) Flavonoids as nutraceuticals: a review. Trop J Pharm Res 7:1089–1099. https://doi.org/10.4314/tjpr.v7i3.14693

Article  Google Scholar 

Mishra A, Sharma AK, Kumar S, Saxena AK, Pandey A (2013) Bauhinia variegata leaf extracts exhibit considerable antibacterial, antioxidant and anticancer activities. Biomed Res Int 2013:915436. https://doi.org/10.1155/2013/915436

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ho CT, Osawa T, Huang MT, Rosen RT (1994) Food phytochemicals for cancer prevention II. Teas, spices, and herbs. American chemical society. Oxford University Press. ISBN 0-8412-2769-1. https://doi.org/10.1007/BF02862924

Gu L, Weng X (2001) Antioxidant activity and components of Salvia plebeia R Br. Food Chem 73:299–305. https://doi.org/10.1016/S0308-8146(00)00300-9

Article  CAS  Google Scholar 

Tan RX, Lu H, Wofender JL, Yu TT, Zheng WF, Yang L, Gafner S, Hostettmann K (1999) Mono- and Sesquiterpenes and antifungal constituents from Artemisia species. Planta Med 65:64–67. https://doi.org/10.1055/s-1999-13965

Article  CAS  PubMed  Google Scholar 

Srisook K, Srisook E, Nachaiyo W, Chan-In M, Thongbai J, Wongyoo K, Chawsuanthong S, Wannasri K, Intasuwan S, Watcharanawee K (2015) Bioassay-guided isolation and mechanistic action of anti-inflammatory agents from Clerodendrum inerme leaves. J Ethnopharmacol 165:94–102. https://doi.org/10.1016/j.jep.2015.02.043

Article  CAS  PubMed  Google Scholar 

Lin YC, Hung CM, Tsai JC, Chen YLS, Wei CW, Kao JY, Way T (2010) Hispidulin potently inhibits human glioblastoma multiforme cells through activation of AMP-activated protein kinase (AMPK). J Agric Food Chem 58:9511–9517. https://doi.org/10.1021/jf1019533

Article  CAS  PubMed  Google Scholar 

Kavvadias D, Sand P, Youdim KA, Qaiser MZ, Evans CR, Baur R, Sigel E, Rausch WD, Riederer P, Schreier P (2004) The flavone hispidulin, a benzodiazepine receptor ligand with positive allosteric properties, traverses the blood brain barrier and exhibits anticonvulsive effects. Br J Pharmacol 142:811–820

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin TY, Lu CW, Wang CC, Lu JF, Wang SJ (2012) Hispidulin inhibits the release of glutamate in rat cerebrocortical nerve terminals. Toxicol Appl Pharmacol 263:233–243. https://doi.org/10.1016/j.taap.2012.06.015

Article  CAS  PubMed  Google Scholar 

Chulasiri M, Bunyapraphatsara N, Moongkarndi P (1992) Mutagenicity and antimutagenicity of hispidulin and hortensin, the flavonoids from Millingtonia hortensis L. Environ Mol Mutagen 20:307–312. https://doi.org/10.1002/em.2850200409

Article  CAS  PubMed  Google Scholar 

Niu X, Chen J, Wang P, Zhou H, Li S, Zhang M (2014) The effects of hispidulin on bupivacaine-induced neurotoxicity: role of AMPK signaling pathway. Cell Biochem Biophys 70:241–249. https://doi.org/10.1007/s12013-014-9888-5

Article  CAS  PubMed  Google Scholar 

Wu X, Xu J (2016) New role of hispidulin in lipid metabolism: PPARα activator. Lipids 51:1249–1257. https://doi.org/10.1007/s11745-016-4200-7

Article  CAS  PubMed  Google Scholar 

Ferrandiz ML, Bustos G, Paya M, Gunasegaran R, Alcaraz MJ (1994) Hispidulin protection against hepatotoxicity induced by bromobenzene in mice. Life Sci 55:145–150

Article  Google Scholar 

Safo DO, Chama MA, Mensah IA, Waibel R (2009) Anti-HIV hispidulin and other constituents of Scoparia dulcis Linn. J Sci Technol 29:7–15. https://doi.org/10.4314/just.v29i2.46218

Article  Google Scholar 

Zhou R, Wang Z, Ma C (2014) Hispidulin exerts anti-osteoporotic activity in ovariectomized mice via activating AMPK signaling pathway. Cell Biochem Biophys 69:311–317. https://doi.org/10.1007/s12013-013-9800-8

Article  CAS  PubMed  Google Scholar 

He L, Wu Y, Lin L, Wang J, Chen Y, Yi Z, Liu M, Pang X (2011) Hispidulin, a small flavonoid molecule, suppresses the angiogenesis and growth of human pancreatic cancer by targeting vascular endothelial growth factor receptor 2-mediated PI3K/Akt/mTOR signaling pathway. Cancer Sci 102:219–225. https://doi.org/10.1111/j.1349-7006.2010.01778.x

Article  CAS  PubMed  Google Scholar 

Chao YY, Kang SY, Po LL, Jie JY, Po TH, De CC (2013) Potential therapeutic role of hispidulin in gastric cancer through induction of apoptosis via NAG-1 signaling. J Evid Altern Med 7:518301. https://doi.org/10.1155/2013/518301

Article  Google Scholar 

Jung MY, Chao MH, Chenu NF, Jang CL, Chi HH, Muh HY, Chih LL, Jung YK, Tzong DW (2010) Hispidulin sensitizes human ovarian cancer cells to TRAIL-induced apoptosis by AMPK activation leading to Mcl-1 block in translation. J Agric Food Chem 58:10020–10026. https://doi.org/10.1021/jf102304g

Article  CAS  Google Scholar 

Gao H, Xie J, Peng J, Han Y, Jiang Q, Han M, Wang C (2015) Hispidulin inhibits proliferation and enhances chemosensitivity of gallbladder cancer cells by targeting HIF-1α. Exp Cell Res 332:236–246. https://doi.org/10.1016/j.yexcr.2014.11.021

Article  CAS  PubMed  Google Scholar 

Dai Y, Sun X, Li B, Ma H, Wu P, Zhang Y, Zhu M, Li HM, Qin M, Wu CZ (2021) The effect of hispidulin, a flavonoid from Salvia plebeia, on human nasopharyngeal carcinoma CNE-2Z cell proliferation, migration, invasion, and apoptosis. Molecules 26:1604. https://doi.org/10.3390/molecules26061604

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ying CL, Chao MH, Jia CT, Jang CL, Yi LSC, Chyou WW, Jung YK, Tzong DW (2010) Hispidulin potently inhibits human glioblastoma multiforme cells through activation of AMP-activated protein kinase (AMPK). J Agric Food Chem 58:9511–9517. https://doi.org/10.1021/jf1019533

Article  CAS  Google Scholar 

Rout KK, Mishra SK (2009) Efficient and sensitive method for quantitative analysis of 6-gingerol in marketed ayurvedic formulation. J Planar Chromatogr-Mod TLC 22:127–131. https://doi.org/10.1556/JPC.22.2009.2.9

Article  CAS  Google Scholar 

Rout KK, Swain SS, Chand PK (2014) Quantification of β-sitosterol in hairy root cultures and natural plant parts of Clitoria ternatea L. J Planar Chromatogr-Mod TLC 27:42–46. https://doi.org/10.1556/JPC.27.2014.1.8

Article  CAS  Google Scholar 

Yadav A, Gupta M (2013) Quantitation of antitubercular compounds in Oroxylum indicum, a Thai vegetable used in the Indian system of medicine. J Planar Chromatogr-Mod TLC 26:306–311. https://doi.org/10.1556/JPC.26.2013.4.2

Article  CAS  Google Scholar 

Jayaprakasam R, Nivedha JS, Gandhimathi M, Ravi TK (2022) Standardisation and estimation of hispidulin–a potent antidiabetic constituent present in leaves of Millingtonia hortensis and Scoparia dulcis by HPTLC and HPLC methods as per ICH appliance & bioassay guided in vitro study of antidiabetic activity. Int J Pharmacogn Phytochem Res 14:05–18. https://ijppr.com/volume14issue3/

Hazekamp A, Verpoorte R, Panthong A (2001) Isolation of a bronchodilator flavonoid from the Thai medicinal plant Clerodendrum petasitesm. J Ethnopharmacol 78:45–49. https://doi.org/10.1016/s0378-8741(01)00320-8

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif