Application of thin-layer chromatography in the assessment of bioactivity properties of isatin derivatives

Laurent A (1841) Recherches sur l’indigo. Ann Chim Phys 3:371–383

Google Scholar 

Popp PD (1975) The chemistry of isatin. In: Katritzky AR, Boulton AJ (eds) Advances in heterocyclic chemistry. Academic Press, London, pp 1–58

Google Scholar 

Bergman J, Lindström JO, Tilstam U (1985) The structure and properties of some indolic constituents in Couroupita guianensis aubl. Tetrahedron 41:2879–2881. https://doi.org/10.1016/S0040-4020(01)96609-8

Article  CAS  Google Scholar 

Kapadia GI, Shukla YN (1993) Melosatin D.: a new isatin alkaloid from melochia tomentosa roots. Planta Med 59:568–569. https://doi.org/10.1055/s-2006-959766

Article  CAS  PubMed  Google Scholar 

da Silva JFM, Garden SJ, Pinto AC (2001) The chemistry of isatins: a review from 1975 to 1999. J Braz Chem Soc 12:273–324. https://doi.org/10.1590/S0103-50532001000300002

Article  Google Scholar 

Guo H (2019) Isatin derivatives and their anti-bacterial activities. Eur J Med Chem 164:678–688. https://doi.org/10.1016/j.ejmech.2018.12.017

Article  CAS  PubMed  Google Scholar 

Meleddu R, Distinto S, Corona A, Tramontano E, Bianco G, Melis C, Cottiglia F, Maccioni E (2017) Isatin thiazoline hybrids as dual inhibitors of HIV-1 reverse transcriptase. J Enzyme Inhib Med Chem 32:130–136. https://doi.org/10.1080/14756366.2016.1238366

Article  CAS  PubMed  Google Scholar 

EzzEldin RR, Saleh MA, Alwarsh SA, Rushdi A, Althoqapy AA, El Saeed HS, Abo Elmaaty A (2023) Design and synthesis of novel 5-((3-(trifluoromethyl)piperidin-1-yl)sulfonyl)indoline-2,3-dione derivatives as promising antiviral agents: in vitro, in silico, and structure–activity relationship studies. Pharmaceuticals 16:1247

Article  CAS  Google Scholar 

Mishra R, Chaurasia H, Singh VK, Naaz F, Singh RK (2021) Molecular modeling, QSAR analysis and antimicrobial properties of schiff base derivatives of isatin. J Mol Struct 1243:130763. https://doi.org/10.1016/j.molstruc.2021.130763

Article  CAS  Google Scholar 

Firke S, Cheke R, Ugale V, Khadse S, Gagarani M, Bari S, Surana S (2021) Rationale design, synthesis, and pharmacological evaluation of isatin analogues as antiseizure agents. Lett Drug Des Discov 18:1146–1164. https://doi.org/10.2174/1570180818666210804145014

Article  CAS  Google Scholar 

Sharma PK, Balwani S, Mathur D, Malhotra S, Singh BK, Prasad AK, Len C, Van der Eycken EV, Ghosh B, Richards NGJ, Parmar VS (2016) Synthesis and anti-inflammatory activity evaluation of novel triazolyl-isatin hybrids. J Enzyme Inhib Med Chem 31:1520–1526. https://doi.org/10.3109/14756366.2016.1151015

Article  CAS  PubMed  Google Scholar 

Adeniji AA, Knoll KE, Loots DT (2020) Potential anti-TB investigational compounds and drugs with repurposing potential in TB therapy: a conspectus. Appl Microbiol Biotechnol 104:5633–5662. https://doi.org/10.1007/s00253-020-10606-y

Article  CAS  PubMed  Google Scholar 

Nain S, Mathur G, Anthwal T, Sharma S, Paliwal S (2023) Synthesis, characterization, and antibacterial activity of new isatin derivatives. Pharm Chem J 57:196–203. https://doi.org/10.1007/s11094-023-02867-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferraz de Paiva RE, Vieira EG, Rodrigues da Silva D, Wegermann CA, Costa Ferreira AM (2021) Anticancer compounds based on isatin-derivatives: strategies to ameliorate selectivity and efficiency. Front Mol Biosci 7:627272. https://doi.org/10.3389/fmolb.2020.627272

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song CH, Han JW (2016) Patent cliff and strategic switch: exploring strategic design possibilities in the pharmaceutical industry. Springerplus 5:692. https://doi.org/10.1186/s40064-016-2323-1

Article  PubMed  PubMed Central  Google Scholar 

https://www.statista.com. Accessed Oct 2023

Nuez AD, Rodríguez R (2008) Current methodology for the assessment of ADME-Tox properties on drug candidate molecules. Biotecnol Apl 34:97–110

Google Scholar 

Chmiel T, Mieszkowska A, Kempińska-Kupczyk D, Kot-Wasik A, Namieśnik J, Mazerska Z (2019) The impact of lipophilicity on environmental processes, drug delivery and bioavailability of food components. Microchem J 146:393–406. https://doi.org/10.1016/j.microc.2019.01.030

Article  CAS  Google Scholar 

Das T, Mehta CH, Nayak UY (2020) Multiple approaches for achieving drug solubility: an in silico perspective. Drug Discov Today 25:1206–1212. https://doi.org/10.1016/j.drudis.2020.04.016

Article  CAS  PubMed  Google Scholar 

Trifunović J, Borčić V, Vukmirović S, Kon SG, Mikov M (2016) Retention data of bile acids and their oxo derivatives in characterization of pharmacokinetic properties and in silico ADME modeling. Eur J Pharm Sci 92:194–202. https://doi.org/10.1016/j.ejps.2016.07.011

Article  CAS  PubMed  Google Scholar 

Ciura K, Belka M, Kawczak P, Bączek T, Nowakowska J (2018) The comparative study of micellar TLC and RP-TLC as potential tools for lipophilicity assessment based on QSRR approach. J Pharm Biomed Anal 149:70–79. https://doi.org/10.1016/j.jpba.2017.10.034

Article  CAS  PubMed  Google Scholar 

Vastag G, Apostolov S, Kaurinović B, Grbović L (2018) Applying multivariate methods in the estimation of bioactivity properties of acetamide derivatives. J Planar Chromatogr-Mod TLC 31:497–504. https://doi.org/10.1556/1006.2018.31.6.10

Article  CAS  Google Scholar 

Dobričić V, Turković N, Ivković B, Csuvik O, Vujić Z (2020) Evaluation of the lipophilicity of chalcones by RP-TLC and computational methods. J Planar Chromatogr-Mod TLC 33:245–253. https://doi.org/10.1007/s00764-020-00029-w

Article  CAS  Google Scholar 

Kovačević S, Karadžić Banjac M, Anojčić J, Podunavac-Kuzmanović S, Jevrić L, Nikolić A, Savić M, Kuzminac I (2022) Chemometrics of anisotropic lipophilicity of anticancer androstane derivatives determined by reversed-phase ultra high performance liquid chromatography with polar aprotic and protic modifiers. J Chromatogr A 1673:463197. https://doi.org/10.1016/j.chroma.2022.463197

Article  CAS  PubMed  Google Scholar 

Ciura K, Nowakowska J, Pikul P, Struck-Lewicka W, Markuszewski M (2015) A comparative quantitative structure-retention relationships study for lipophilicity determination of compounds with a phenanthrene skeleton on cyano-, reversed phase-, and normal phase-thin layer chromatography stationary phases. J AOAC Int 98:345–353. https://doi.org/10.5740/jaoacint.14-187

Article  CAS  PubMed  Google Scholar 

Ciura K, Fedorowicz J, Andrić F, Žuvela P, Greber KE, Baranowski P, Kawczak P, Nowakowska J, Bączek T, Sączewski J (2019) Lipophilicity determination of antifungal isoxazolo[3,4-b]pyridin-3(1H)-ones and their N1-substituted derivatives with chromatographic and computational methods. Molecules 24:4311. https://doi.org/10.3390/molecules24234311

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ciura K, Kawczak P, Greber K, Kapica H, Nowakowska J, Bączek T (2019) Application of reversed-phase thin layer chromatography and QSRR modelling for prediction of protein binding of selected β-blockers. J Pharm Biomed Anal 176:112767. https://doi.org/10.1016/j.jpba.2019.07.015

Article  CAS  PubMed  Google Scholar 

Poole SK, Poole CF (2003) Separation methods for estimating octanol–water partition coefficients. J Chromatogr B: Anal Technol Biomed Life Sci 797:3–19. https://doi.org/10.1016/j.jchromb.2003.08.032

Article  CAS  Google Scholar 

Vastag G, Apostolov S, Perišić-Janjić N, Matijević B (2013) Multivariate analysis of chromatographic retention data and lipophilicity of phenylacetamide derivatives. Anal Chim Acta 767:44–49. https://doi.org/10.1016/j.aca.2013.01.002

Article  CAS  PubMed  Google Scholar 

Stasiak J, Koba M, Gackowski M, Baczek T (2018) Chemometric analysis for the classification of some groups of drugs with divergent pharmacological activity on the basis of some chromatographic and molecular modeling parameters. Comb Chem High Throughput Screen 21:125–137. https://doi.org/10.2174/1386207321666180129102149

Article  CAS  PubMed  Google Scholar 

Đaković-Sekulić T, Smolinski A, Mandić A, Lazić A (2018) Chromatographic and in silico assessment of logP measures for new spirohydantoin derivatives with anticancer activity. J Chemom 32:e2991. https://doi.org/10.1002/cem.2991

Article  CAS  Google Scholar 

Vastag G, Apostolov S, Mijin D, Grbović L, Kaurinović B (2019) Chemometric study of chromatographic and computational bioactivity parameters of diphenylacetamides. J Chemom 33:e3091. https://doi.org/10.1002/cem.3091

Article  CAS  Google Scholar 

Starek M, Plenis A, Zagrobelna M, Dąbrowska M (2021) Assessment of lipophilicity descriptors of selected NSAIDs obtained at different TLC stationary phases. Pharmaceutics 13:440. https://doi.org/10.3390/pharmaceutics13040440

Article  CAS  PubMed  PubMed Central  Google Scholar 

Avdeef A, Kansy M (2022) Predicting solubility of newly-approved drugs (2016–2020) with a simple ABSOLV and GSE (flexible-acceptor) consensus model outperforming random forest regression. J Solut Chem 51:1020–1055. https://doi.org/10.1007/s10953-022-01141-7

Article  CAS  Google Scholar 

Šekularac GM, Nikolić JB, Petrović P, Bugarski B, Đurović B, Drmanić SŽ (2014) Synthesis, antimicrobial and antioxidative activity of some new isatin derivatives. J Serb Chem Soc 79:1347–1354. https://doi.org/10.2298/JSC140709084S

Article  CAS  Google Scholar 

Brkić DR, Božić AR, Nikolić VD, Marinković AD, Elshaflu H, Nikolić JB, Drmanić SŽ (2016) Solvatochromism of isatin based Schiff bases: an LSER and LFER study. J Serb Chem Soc 81:979–997. https://doi.org/10.2298/JSC160119049B

留言 (0)

沒有登入
gif