Genetic basis and repeatability for desiccation resistance in Drosophila melanogaster (Diptera: Drosophilidae)

Arya GH, Magwire MM, Huang W et al (2015) The genetic basis for variation in olfactory behavior in Drosophila melanogaster. Chem Senses 40:233–243. https://doi.org/10.1093/chemse/bjv001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bazinet AL, Marshall KE, Macmillan HA et al (2010) Rapid changes in desiccation resistance in Drosophila melanogaster are facilitated by changes in cuticular permeability. J Insect Physiol 56:2006–2012. https://doi.org/10.1016/j.jinsphys.2010.09.002

Article  CAS  PubMed  Google Scholar 

Boyle EA, Li YI, Pritchard JK (2017) An expanded view of complex traits: from polygenic to omnigenic. Cell 169:1177–1186. https://doi.org/10.1016/j.cell.2017.05.038

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bunt S, Hooley C, Hu N et al (2010) Hemocyte-secreted type IV collagen enhances BMP signaling to guide renal tubule morphogenesis in Drosophila. Dev Cell 19:296–306. https://doi.org/10.1016/j.devcel.2010.07.019

Article  CAS  PubMed  PubMed Central  Google Scholar 

Campbell JB, Overby PF, Gray AE et al (2019) Genome-wide association analysis of anoxia tolerance in Drosophila melanogaster. G3. Genes Genomes Genet 9:2989–2999. https://doi.org/10.1534/g3.119.400421

Article  CAS  Google Scholar 

Castaneda LE, Rezende EL, Santos M (2015) Heat tolerance in Drosophila subobscura along a latitudinal gradient: contrasting patterns between plastic and genetic responses. Evolution 69:2721–2734. https://doi.org/10.1111/evo.12757

Article  PubMed  Google Scholar 

Chanut-Delalande H, Jung AC, Baer MM et al (2010) The Hrs/Stam complex acts as a positive and negative regulator of RTK signaling during Drosophila development. PLoS ONE 5:e10245. https://doi.org/10.1371/journal.pone.0010245

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen X, Oh SW, Zheng Z et al (2003) Cyclin d-cdk4 and cyclin e-cdk2 regulate the Jak/STAT signal transduction pathway in Drosophila. Dev Cell 4:179–190. https://doi.org/10.1016/s1534-5807(03)00024-8

Article  CAS  PubMed  Google Scholar 

Chippindale AK, Gibbs AG, Sheik M et al (1998) Resource acquisition and the evolution of stress resistance in Drosophila melanogaster. Evolution 52:1342–1352. https://doi.org/10.1111/j.1558-5646.1998.tb02016.x

Article  PubMed  Google Scholar 

Chown SL, Sorensen JG, Terblanche JS (2011) Water loss in insects: an environmental change perspective. J Insect Physiol 57:1070–1084. https://doi.org/10.1016/j.jinsphys.2011.05.004

Article  CAS  PubMed  Google Scholar 

Clemson AS, Sgrò CM, Telonis-Scott M (2018) Transcriptional profiles of plasticity for desiccation stress in Drosophila. Comp Biochem Physiol B 216:1–9. https://doi.org/10.1016/j.cbpb.2017.11.003

Article  CAS  PubMed  Google Scholar 

Dow JA, Krause SA, Herzyk P (2021) Updates on ion and water transport by the Malpighian tubule. Curr Opin Insect Sci 47:31–37. https://doi.org/10.1016/j.cois.2021.02.018

Article  PubMed  PubMed Central  Google Scholar 

Evangelou A, Ignatiou A, Antoniou C et al (2019) Unpredictable effects of the genetic background of transgenic lines in physiological quantitative traits. G3. Genes Genomes Genet 9:3877–3890. https://doi.org/10.1534/g3.119.400715

Article  CAS  Google Scholar 

Everman ER, Morgan TJ (2018) Antagonistic pleiotropy and mutation accumulation contribute to age-related decline in stress response. Evolution 72:303–317. https://doi.org/10.1111/evo.13408

Article  CAS  PubMed  Google Scholar 

Everman ER, McNeil CL, Hackett JL et al (2019) Dissection of complex, fitness-related traits in multiple Drosophila mapping populations offers insight into the genetic control of stress resistance. Genetics 211:1449–1467. https://doi.org/10.1534/genetics.119.301930

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fallis LC, Fanara JJ, Morgan TJ (2014) Developmental thermal plasticity among Drosophila melanogaster populations. J Evol Biol 27:557–564. https://doi.org/10.1111/jeb.12321

Article  CAS  PubMed  Google Scholar 

Fanara JJ, Beti MI, Gandini L, Hasson E (2022) Oviposition behaviour in Drosophila melanogaster: Genetic and behavioural decoupling between oviposition acceptance and preference for natural fruits. J Evol Biol 36:251–263. https://doi.org/10.1111/jeb.14109

Article  CAS  PubMed  Google Scholar 

Freda PJ, Alex JT, Morgan TJ, Ragland GJ (2017) Genetic decoupling of thermal hardiness across metamorphosis in Drosophila melanogaster. Integr Comp Biol 57:999–1009. https://doi.org/10.1093/icb/icx102

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gefen E, Marlon AJ, Gibbs AG (2006) Selection for desiccation resistance in adult Drosophila melanogaster affects larval development and metabolite accumulation. J Exp Biol 209:3293–3300. https://doi.org/10.1242/jeb.02397

Article  PubMed  Google Scholar 

Gibbs AG (2002) Water balance in desert Drosophila: lessons from non-charismatic microfauna. Comp Biochem Physiol A 133:781–789. https://doi.org/10.1016/s1095-6433(02)00208-8

Article  Google Scholar 

Gibbs AG, Matzkin LM (2001) Evolution of water balance in the genus Drosophila. J Exp Biol 204:2331–2338. https://doi.org/10.1242/jeb.204.13.2331

Article  CAS  PubMed  Google Scholar 

Gibbs AG, Chippindale AK, Rose MR (1997) Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster. J Exp Biol 200:1821–1832. https://doi.org/10.1242/jeb.200.12.1821

Article  CAS  PubMed  Google Scholar 

Gibbs AG, Fukuzato F, Matzkin LM (2003) Evolution of water conservation mechanisms in Drosophila. J Exp Biol 206:1183–1192. https://doi.org/10.1242/jeb.00233

Article  PubMed  Google Scholar 

Gilchrist GW, Jeffers LM, West B et al (2008) Clinal patterns of desiccation and starvation resistance in ancestral and invading populations of Drosophila subobscura. Evol Appl 1:513–523. https://doi.org/10.1111/j.1752-4571.2008.00040.x

Article  PubMed  PubMed Central  Google Scholar 

Griffin PC, Hangartner SB, Fournier-Level A, Hoffmann AA (2017) Genomic trajectories to desiccation resistance: Convergence and divergence among replicate selected Drosophila lines. Genetics 205:871–890. https://doi.org/10.1534/genetics.116.187104

Article  PubMed  Google Scholar 

Hatton-Ellis E, Ainsworth C, Sushama Y et al (2007) Genetic regulation of patterned tubular branching in Drosophila. Proc Natl Acad Sci USA 104:169–174. https://doi.org/10.1073/pnas.0606933104

Article  CAS  PubMed  Google Scholar 

Hatzihristidis T, Desai N, Hutchins AP et al (2015) A Drosophila-centric view of protein tyrosine phosphatases. FEBS Lett 589:951–966. https://doi.org/10.1016/j.febslet.2015.03.005

Article  CAS  PubMed  Google Scholar 

Hoffmann AA, Parsons PA (1989) An integrated approach to environmental-stress tolerance and life-history variation - desiccation tolerance in Drosophila. Biol J Linn Soc 37:117–136. https://doi.org/10.1111/j.1095-8312.1989.tb02098.x

Article  Google Scholar 

Hoffmann AA, Parsons PA (1993) Direct and correlated responses to selection for dessication resistance: a comparison of Drosophila melanogaster and D. simulans. J Evol Biol 6:643–657. https://doi.org/10.1046/j.1420-9101.1993.6050643.x

Article  Google Scholar 

Hoffmann AA, Sgro CM (2018) Comparative studies of critical physiological limits and vulnerability to environmental extremes in small ectotherms: how much environmental control is needed? Integ Zool 13:355–371. https://doi.org/10.1111/1749-4877.12297

Article  Google Scholar 

Huang W, Massouras A, Inoue Y et al (2014) Natural variation in genome architecture among 205 Drosophila melanogaster genetic reference panel lines. Genome Res 24:1193–1208. https://doi.org/10.1101/gr.171546.113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang W, Campbell T, Carbone MA et al (2020a) Context-dependent genetic architecture of Drosophila life span. PLoS Biol 18:e3000645. https://doi.org/10.1371/journal.pbio.3000645

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang W, Carbone MA, Lyman RF et al (2020b) Genotype by environment interaction for gene expression in Drosophila melanogaster. Nat Commun 11:1–10. https://doi.org/10.1038/s41467-020-19131-y

Article  CAS  Google Scholar 

Kang L, Aggarwal DD, Rashkovetsky E et al (2016) Rapid genomic changes in Drosophila melanogaster adapting to desiccation stress in an experimental evolution system. BMC Genom 17:233. https://doi.org/10.1186/s12864-016-2556-y

Article  CAS  Google Scholar 

Kellermann V, van Heerwaarden B (2019) Terrestrial insects and climate change: adaptive responses in key traits. Physiol Entomol 44:99–115. https://doi.org/10.1111/phen.12282

Article  Google Scholar 

留言 (0)

沒有登入
gif