Arya GH, Magwire MM, Huang W et al (2015) The genetic basis for variation in olfactory behavior in Drosophila melanogaster. Chem Senses 40:233–243. https://doi.org/10.1093/chemse/bjv001
Article CAS PubMed PubMed Central Google Scholar
Bazinet AL, Marshall KE, Macmillan HA et al (2010) Rapid changes in desiccation resistance in Drosophila melanogaster are facilitated by changes in cuticular permeability. J Insect Physiol 56:2006–2012. https://doi.org/10.1016/j.jinsphys.2010.09.002
Article CAS PubMed Google Scholar
Boyle EA, Li YI, Pritchard JK (2017) An expanded view of complex traits: from polygenic to omnigenic. Cell 169:1177–1186. https://doi.org/10.1016/j.cell.2017.05.038
Article CAS PubMed PubMed Central Google Scholar
Bunt S, Hooley C, Hu N et al (2010) Hemocyte-secreted type IV collagen enhances BMP signaling to guide renal tubule morphogenesis in Drosophila. Dev Cell 19:296–306. https://doi.org/10.1016/j.devcel.2010.07.019
Article CAS PubMed PubMed Central Google Scholar
Campbell JB, Overby PF, Gray AE et al (2019) Genome-wide association analysis of anoxia tolerance in Drosophila melanogaster. G3. Genes Genomes Genet 9:2989–2999. https://doi.org/10.1534/g3.119.400421
Castaneda LE, Rezende EL, Santos M (2015) Heat tolerance in Drosophila subobscura along a latitudinal gradient: contrasting patterns between plastic and genetic responses. Evolution 69:2721–2734. https://doi.org/10.1111/evo.12757
Chanut-Delalande H, Jung AC, Baer MM et al (2010) The Hrs/Stam complex acts as a positive and negative regulator of RTK signaling during Drosophila development. PLoS ONE 5:e10245. https://doi.org/10.1371/journal.pone.0010245
Article CAS PubMed PubMed Central Google Scholar
Chen X, Oh SW, Zheng Z et al (2003) Cyclin d-cdk4 and cyclin e-cdk2 regulate the Jak/STAT signal transduction pathway in Drosophila. Dev Cell 4:179–190. https://doi.org/10.1016/s1534-5807(03)00024-8
Article CAS PubMed Google Scholar
Chippindale AK, Gibbs AG, Sheik M et al (1998) Resource acquisition and the evolution of stress resistance in Drosophila melanogaster. Evolution 52:1342–1352. https://doi.org/10.1111/j.1558-5646.1998.tb02016.x
Chown SL, Sorensen JG, Terblanche JS (2011) Water loss in insects: an environmental change perspective. J Insect Physiol 57:1070–1084. https://doi.org/10.1016/j.jinsphys.2011.05.004
Article CAS PubMed Google Scholar
Clemson AS, Sgrò CM, Telonis-Scott M (2018) Transcriptional profiles of plasticity for desiccation stress in Drosophila. Comp Biochem Physiol B 216:1–9. https://doi.org/10.1016/j.cbpb.2017.11.003
Article CAS PubMed Google Scholar
Dow JA, Krause SA, Herzyk P (2021) Updates on ion and water transport by the Malpighian tubule. Curr Opin Insect Sci 47:31–37. https://doi.org/10.1016/j.cois.2021.02.018
Article PubMed PubMed Central Google Scholar
Evangelou A, Ignatiou A, Antoniou C et al (2019) Unpredictable effects of the genetic background of transgenic lines in physiological quantitative traits. G3. Genes Genomes Genet 9:3877–3890. https://doi.org/10.1534/g3.119.400715
Everman ER, Morgan TJ (2018) Antagonistic pleiotropy and mutation accumulation contribute to age-related decline in stress response. Evolution 72:303–317. https://doi.org/10.1111/evo.13408
Article CAS PubMed Google Scholar
Everman ER, McNeil CL, Hackett JL et al (2019) Dissection of complex, fitness-related traits in multiple Drosophila mapping populations offers insight into the genetic control of stress resistance. Genetics 211:1449–1467. https://doi.org/10.1534/genetics.119.301930
Article CAS PubMed PubMed Central Google Scholar
Fallis LC, Fanara JJ, Morgan TJ (2014) Developmental thermal plasticity among Drosophila melanogaster populations. J Evol Biol 27:557–564. https://doi.org/10.1111/jeb.12321
Article CAS PubMed Google Scholar
Fanara JJ, Beti MI, Gandini L, Hasson E (2022) Oviposition behaviour in Drosophila melanogaster: Genetic and behavioural decoupling between oviposition acceptance and preference for natural fruits. J Evol Biol 36:251–263. https://doi.org/10.1111/jeb.14109
Article CAS PubMed Google Scholar
Freda PJ, Alex JT, Morgan TJ, Ragland GJ (2017) Genetic decoupling of thermal hardiness across metamorphosis in Drosophila melanogaster. Integr Comp Biol 57:999–1009. https://doi.org/10.1093/icb/icx102
Article CAS PubMed PubMed Central Google Scholar
Gefen E, Marlon AJ, Gibbs AG (2006) Selection for desiccation resistance in adult Drosophila melanogaster affects larval development and metabolite accumulation. J Exp Biol 209:3293–3300. https://doi.org/10.1242/jeb.02397
Gibbs AG (2002) Water balance in desert Drosophila: lessons from non-charismatic microfauna. Comp Biochem Physiol A 133:781–789. https://doi.org/10.1016/s1095-6433(02)00208-8
Gibbs AG, Matzkin LM (2001) Evolution of water balance in the genus Drosophila. J Exp Biol 204:2331–2338. https://doi.org/10.1242/jeb.204.13.2331
Article CAS PubMed Google Scholar
Gibbs AG, Chippindale AK, Rose MR (1997) Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster. J Exp Biol 200:1821–1832. https://doi.org/10.1242/jeb.200.12.1821
Article CAS PubMed Google Scholar
Gibbs AG, Fukuzato F, Matzkin LM (2003) Evolution of water conservation mechanisms in Drosophila. J Exp Biol 206:1183–1192. https://doi.org/10.1242/jeb.00233
Gilchrist GW, Jeffers LM, West B et al (2008) Clinal patterns of desiccation and starvation resistance in ancestral and invading populations of Drosophila subobscura. Evol Appl 1:513–523. https://doi.org/10.1111/j.1752-4571.2008.00040.x
Article PubMed PubMed Central Google Scholar
Griffin PC, Hangartner SB, Fournier-Level A, Hoffmann AA (2017) Genomic trajectories to desiccation resistance: Convergence and divergence among replicate selected Drosophila lines. Genetics 205:871–890. https://doi.org/10.1534/genetics.116.187104
Hatton-Ellis E, Ainsworth C, Sushama Y et al (2007) Genetic regulation of patterned tubular branching in Drosophila. Proc Natl Acad Sci USA 104:169–174. https://doi.org/10.1073/pnas.0606933104
Article CAS PubMed Google Scholar
Hatzihristidis T, Desai N, Hutchins AP et al (2015) A Drosophila-centric view of protein tyrosine phosphatases. FEBS Lett 589:951–966. https://doi.org/10.1016/j.febslet.2015.03.005
Article CAS PubMed Google Scholar
Hoffmann AA, Parsons PA (1989) An integrated approach to environmental-stress tolerance and life-history variation - desiccation tolerance in Drosophila. Biol J Linn Soc 37:117–136. https://doi.org/10.1111/j.1095-8312.1989.tb02098.x
Hoffmann AA, Parsons PA (1993) Direct and correlated responses to selection for dessication resistance: a comparison of Drosophila melanogaster and D. simulans. J Evol Biol 6:643–657. https://doi.org/10.1046/j.1420-9101.1993.6050643.x
Hoffmann AA, Sgro CM (2018) Comparative studies of critical physiological limits and vulnerability to environmental extremes in small ectotherms: how much environmental control is needed? Integ Zool 13:355–371. https://doi.org/10.1111/1749-4877.12297
Huang W, Massouras A, Inoue Y et al (2014) Natural variation in genome architecture among 205 Drosophila melanogaster genetic reference panel lines. Genome Res 24:1193–1208. https://doi.org/10.1101/gr.171546.113
Article CAS PubMed PubMed Central Google Scholar
Huang W, Campbell T, Carbone MA et al (2020a) Context-dependent genetic architecture of Drosophila life span. PLoS Biol 18:e3000645. https://doi.org/10.1371/journal.pbio.3000645
Article CAS PubMed PubMed Central Google Scholar
Huang W, Carbone MA, Lyman RF et al (2020b) Genotype by environment interaction for gene expression in Drosophila melanogaster. Nat Commun 11:1–10. https://doi.org/10.1038/s41467-020-19131-y
Kang L, Aggarwal DD, Rashkovetsky E et al (2016) Rapid genomic changes in Drosophila melanogaster adapting to desiccation stress in an experimental evolution system. BMC Genom 17:233. https://doi.org/10.1186/s12864-016-2556-y
Kellermann V, van Heerwaarden B (2019) Terrestrial insects and climate change: adaptive responses in key traits. Physiol Entomol 44:99–115. https://doi.org/10.1111/phen.12282
留言 (0)