Aliphatic Lactones of Natural Origin: Their Toxicological and Behavioral Effects as a Possible Control Strategy for Medical Importance Mosquitoes

Aguirre-Obando OA, Duarte-Gandica I, Álvarez-Londoño JC, Jiménez-Montoya JA. Actividad larvicida de extractos vegetales de la familia Asteraceae y modelación matemática para su uso en el control de poblaciones de Aedesaegypti. Actualidades Biológicas. 2018;40(108):5–16.

Article  Google Scholar 

Gleiser RM, Zygadlo JA. Insecticidal properties of essential oils from Lippia turbinata and Lippia polystachya (Verbenaceae) against Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res. 2007;101(5):1349–54.

Article  PubMed  Google Scholar 

Pilger D, De Maesschalckm M, Horstick O, San Martin JL. Dengue outbreak response: documented effective interventions and evidence gaps. TropIKAnet. 2010;1:1.

Google Scholar 

World Health Organization. Space spray application of insecticides for vector and public health pest control: a practitioner’s guide (No. WHO/CDS/WHOPES/GCDPP/2003.5). World Health Organization. 2003;1-43. Available from: https://iris.who.int/bitstream/handle/10665/68057/WHO_CDS?sequence=1.

Floore TG. Mosquito larval control practices: past and present. J Am Mosq Control Assoc. 2006;22(3):527–33.

Article  CAS  PubMed  Google Scholar 

Seccacini E, Lucia A, Zerba E, Licastro S, Masuh H. Aedes aegypti resistance to temephos in Argentina. J Am Mosq Control Assoc. 2008;24(4):608–9.

Article  PubMed  Google Scholar 

Delannay C, Goindin D, Kellaou K, Ramdini C, Gustave J, Vega-Rúa A. Multiple insecticide resistance in Culex quinquefasciatus populations from Guadeloupe (French West Indies) and associated mechanisms. PLoS one. 2018;13(6):e0199615.

Article  PubMed  PubMed Central  Google Scholar 

Bernal Jiménez LC. Entomopathogenic activity of Lysinibacillus sphaericus in field realistic dosages of glyphosate in Aedes aegypti and Culex quinquefasciatus larvae resistant to temephos. Universidad de los Andes. 2019:1–12. [online] Available from: https://repositorio.uniandes.edu.co/server/api/core/bitstreams/ec02210a-b3d1-4519-a53e-3ef97e15d974/content.

Leyva M, French L, Pino O, Montada D, Morejón G, Marquetti MDC. Plantas con actividad insecticida: una alternativa natural contra mosquitos. Rev Bioméd. 2017;28(3):139–81.

Google Scholar 

Silvério MRS, Espindola LS, Lopes NP, Vieira PC. Plant natural products for the control of Aedes aegypti: the main vector of important arboviruses. Molecules. 2020;25(15):3484.

Article  PubMed  PubMed Central  Google Scholar 

Sartori SK, Diaz MAN, Diaz-Munoz G. Lactones: classification, synthesis, biological activities, and industrial applications. Tetrahedron. 2021;84:132001.

Article  CAS  Google Scholar 

Dufosse L, Latrasse A, Spinnler HE. Importance of lactones in food flavours: structure, distribution, sensory properties and biosynthesis. Sci Aliment (France). 1994;14:17–50.

Nogueira JP, da Silva Souza IH, Andrade JKS, Narain N. Status of research on lactones used as aroma: a bibliometric review. Food Biosci. 2022;50:102004.

Simmons D. Evaluation of vaporization enthalpies and vapor pressures of various aroma and pharmacologically active compounds by correlation gas chromatography. Thesis Submitted to the Graduate School at the University of Missouri- St. Louis in partial fulfillment of the requirements for the degree Master of Science in Chemistry. 2018; 1-120. Theses. [online] Available from: https://irl.umsl.edu/thesis/335.

Forss DA. Odor and flavor compounds from lipids. Prog Chem Fats Other Lipids. 1973;13:177–258.

Article  CAS  Google Scholar 

Bernreuther A, Bank J, Krammer G, Schreier P. Multidimensional gas chromatography/mass spectrometry: a powerful tool for the direct chiral evaluation of aroma compounds in plant tissues I. 5-alkanolides in fruits. Phytochem Anal. 1991;2(1):43–7.

Article  Google Scholar 

Barros MES, Freitas JC, Santos GK, da Silva RCS, Pontual EV, Paiva PM, et al. Effects of α, β-unsaturated lactones on larval survival and gut trypsin as well as oviposition response of Aedes aegypti. Exp Parasitol. 2015;156:37–41.

Article  CAS  PubMed  Google Scholar 

Stevens JC, Merritt DJ, Flematti GR, Ghisalberti EL, Dixon KW. Seed germination of agricultural weeds is promoted by the butenolide 3-methyl-2 H-furo [2, 3-c] pyran-2-one under laboratory and field conditions. Plant Soil. 2007;298:113–24.

Article  CAS  Google Scholar 

de Fátima Â, Kohn LK, de Carvalho JE, Pilli RA. Cytotoxic activity of (S)-goniothalamin and analogues against human cancer cells. Bioorg Med Chem. 2006;14(3):622–31.

Article  PubMed  Google Scholar 

Silva LDC, Tauhata SBF, Baeza LC, de Oliveira CMA, Kato L, Borges CL, et al. Argentilactone molecular targets in Paracoccidioides brasiliensis identified by chemoproteomics. Antimicrob Agents Chemother. 2018;62(11):10–1128.

Article  Google Scholar 

• Toloza AC, Zygadlo J, Mougabure-Cueto G, Zerba E, Faillaci S, Picollo MI. The fumigant and repellent activity of aliphatic lactones against Pediculus humanus capitis (Anoplura: Pediculidae). Mem Inst Oswaldo Cruz. 2006;101:55–6. Toloza et al. evaluated the repellency activity of three aliphatic lactones, including γ-nonalactone and δ-dodecalactone, against permethrin-resistant Pediculus humanus capitis from Argentina. In the repellency test, the three lactones were as effective as the repellent piperonal.

Article  CAS  PubMed  Google Scholar 

Mwangi MT, Gikonyo NK, Ndiege IO. Repellent properties of δ-octalactone against the tsetse fly, Glossina morsitans morsitans. J Insect Sci. 2008;8(1):43.

PubMed  PubMed Central  Google Scholar 

Wachira BM, Mireji PO, Okoth S, William JM, Murilla GA, Hassanali A. Responses of Glossina pallidipes and Glossina morsitans morsitans tsetse flies to analogues of δ-octalactone and selected blends. Acta Trop. 2016;160:53–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cáceres, M. Estudio integral de la resistencia a insecticidas y alternativas para el control de la chinche de cama Cimex lectularius L. (Heteroptera: Cimicidae) en Argentina. 2020; 1:209. PhD Theses. Universidad de San Martin: Ciencia y Tecnología, Mención Química.

Gonzalez PV, Alvarez Costa A, Harburguer LV, Masuh HM. Quantitative evaluation of the behavioral response to attractant and repellent compounds in Anopheles pseudopunctipennis and Aedes aegypti (Diptera: Culicidae) larvae. J Econ Entomol. 2019;112(3):1388–95.

Article  CAS  PubMed  Google Scholar 

Pask GM, Romaine IM, Zwiebel LJ. The molecular receptive range of a lactone receptor in Anopheles gambiae. Chem Senses. 2013;38(1):19–25.

Article  CAS  PubMed  Google Scholar 

Menger DJ, van Loon JJ, Takken W. Assessing the efficacy of candidate mosquito repellents against the background of an attractive source that mimics a human host. Med Vet Entomol. 2014;28(4):407–13.

Article  CAS  PubMed  Google Scholar 

Takken W, Van Loon JJA, Zwiebel LJ, Pask GM, Mukabana WR. “Insect repellent compositions and methods of use”. U.S. Patent No. 15/033,884. 2013.

•• Bedoukian RH. “Control and repellency of mosquitoes”. U.S. Patent No. 9,314,029. 2016. Bedoukian enunciated that saturated δ- and γ-lactones or α, β-unsaturated with side chains of variable length and/or complexity might be able of functioning as repellent agents and for mosquito control. His bioassays confirmed the repellent capacity and protection against bites of certain lactones using adult Ae. aegypti and Cx. pipiens quinquefasciatus mosquitoes.

Rodriguez M. Evaluación de la actividad repelente de sustancias de origen natural como estrategia de protección y control del Aedes aegypti (Diptera: culicidae). Bachellor Theses. Universidad de Belgrano, Ciencias Biológicas; 2020. p. 1–57.

Xu P, Choo YM, An S, Leal GM, Leal WS. Mosquito odorant receptor sensitive to natural spatial repellents and inhibitory compounds. Insect Biochem Mol Biol. 2022;144:103763.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gatfield IL. Biotechnological production of flavour-active lactones. Biotechnol Aroma Compd. 1997;55:221–38.

Maga JA, Katz I. Lactones in foods. Crit Rev Food Sci Nutr. 1976;8(1):1–56.

Article  CAS  Google Scholar 

Zia H, Von Ah U, Meng YH, Schmidt R, Kerler J, Fuchsmann P. Biotechnological formation of dairy flavor inducing δ-lactones from vegetable oil. Food Chem: X. 2022;13:100220.

CAS  PubMed  Google Scholar 

Marella ER, Dahlin J, Dam MI, Ter Horst J, Christensen HB, Sudarsan S, et al. A single-host fermentation process for the production of flavor lactones from non-hydroxylated fatty acids. Metab Eng. 2020;61:427–36.

Article  CAS  PubMed  Google Scholar 

Syed N, Singh S, Chaturvedi S, Nannaware AD, Khare SK, Rout PK. Production of lactones for flavoring and pharmacological purposes from unsaturated lipids: an industrial perspective. Crit Rev Food Sci Nutr. 2022;62:1–32.

Clements AN. The Biology of Mosquitoes Volume 2: Sensory Reception and Behaviour. Wallingford, UK: CABI Publishing; 1999.

Xia Y, Wang G, Buscariollo D, Pitts RJ, Wenger H, Zwiebel LJ. The molecular and cellular basis of olfactory-driven behavior in Anopheles gambiae larvae. Proc Natl Acad Sci. 2008;105(17):6433–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

• Gonzalez PV, González Audino PA, Masuh HM. Behavioral response of Aedes aegypti (Diptera: Culicidae) larvae to synthetic and natural attractants and repellents. J Med Entomol. 2015;52(6):1315–21. González et al. adapted and used a behavioral assay to identify a variety of odor-specific responses of Ae. aegypti larvae that depend on the integrity of the larval antennae. Such an assay makes it possible to study chemosensory-driven behaviors in larvae of this and other mosquito species.

Article  CAS  PubMed  Google Scholar 

Heimbeck G, Bugnon V, Gendre N, Häberlin C, Stocker RF. Smell and taste perception in Drosophila melanogasterLarva: toxin expression studies in chemosensory neurons. JNeurosci. 1999;19(15):6599–609.

Article  CAS  Google Scholar 

Goh SH, Ee GCL, Chuah CH, Wei C. Styrylpyrone derivatives from Goniothalamus dolichocarpus. Aust J Chem. 1995;48(2):199–205.

Article  CAS  Google Scholar 

Ratnayake R, Karunaratne V, Ratnayake Bandara BM, Kumar V, MacLeod JK, Simmonds P. Two new lactones with mosquito larvicidal activity from three Hortonia species. J Nat Prod. 2001;64(3):376–8.

Article  CAS  PubMed  Google Scholar 

Ratnayake R, Gunasekera S, Williams D, Andersen R, Karunaratne V. Novel epoxy butenolides from the genus Hortonia. Ceylon J Sci. 2019;48(1):97–100.

Article  Google Scholar 

Seo SM, Lee JW, Shin J, Tak JH, Hyun J, Park IK. Development of cellulose nanocrystal-stabilized Pickering emulsions of massoia and nutmeg essential oils for the control of Aedes albopictus. Sci Rep. 2021;11(1):12038.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bisset JA, Rodríguez M, De Armas Y. Comparación de 2 poblaciones de mosquitos Aedes aegypti de Santiago de Cuba con diferente conducta de reposo. Rev Cubana Med Trop. 2005;57(2):143–50.

PubMed  Google Scholar 

Litchfield JJ, Wilcoxon F. A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther. 1949;96(2):99–113.

CAS  PubMed  Google Scholar 

Cheng SS, Chang HT, Chang ST, Tsai KH, Chen WJ. Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresour Technol. 2003;89(1):99–102.

Article  CAS  PubMed  Google Scholar 

Al-Sarar AS, Al-Shahrani D, Bayoumi AE, Abobakr Y, Hussein HI. Laboratory and feld evaluation of some chemical and biological larvicides against Culex spp. (Diptera: Culicidae) immature stages. Int J Agric Biol. 2011;13(1):115–9.

Food and Drug Administration (FDA). Cfr - code of federal regulations, 21 CFR 172.515. Title 21, Volume 3. 2021. [online] Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/

留言 (0)

沒有登入
gif