Circadian alignment of food intake and glycaemic control by time-restricted eating: A systematic review and meta-analysis

Koopman ADM, Rauh SP, van ’t Riet E, et al. The association between social jetlag, the metabolic syndrome, and type 2 diabetes mellitus in the general population: The new hoorn study. J Biol Rhythms. 2017;32:359–68. https://doi.org/10.1177/0748730417713572.

Article  PubMed  PubMed Central  Google Scholar 

Vetter C, Dashti HS, Lane JM, et al. Night shift work, genetic risk, and type 2 diabetes in the UK Biobank. Diabetes Care. 2018;41:762–9. https://doi.org/10.2337/dc17-1933.

Article  PubMed  PubMed Central  Google Scholar 

Gabel K, Hoddy KK, Haggerty N, et al. Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: A pilot study. Nutr Healthy Aging. 2018;4:345–53. https://doi.org/10.3233/NHA-170036.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chow LS, Manoogian ENC, Alvear A, et al. Time-restricted eating effects on body composition and metabolic measures in humans who are overweight: A feasibility study. Obesity. 2020;28:860–9. https://doi.org/10.1002/oby.22756.

Article  CAS  PubMed  Google Scholar 

Cienfuegos S, Gabel K, Kalam F, et al. Effects of 4- and 6-h time-restricted feeding on weight and cardiometabolic health: A randomized controlled trial in adults with obesity. Cell Metab. 2020;32:366–378.e3. https://doi.org/10.1016/j.cmet.2020.06.018.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Faris MA-I, Jahrami H, BaHammam A, et al. A systematic review, meta-analysis, and meta-regression of the impact of diurnal intermittent fasting during Ramadan on glucometabolic markers in healthy subjects. Diabetes Res Clin Pract. 2020;165:108226. https://doi.org/10.1016/j.diabres.2020.108226.

Article  CAS  PubMed  Google Scholar 

Ravussin E, Beyl RA, Poggiogalle E, et al. Early time-restricted feeding reduces appetite and increases fat oxidation but does not affect energy expenditure in humans. Obesity (Silver Spring). 2019;27:1244–54. https://doi.org/10.1002/oby.22518.

Article  CAS  PubMed  Google Scholar 

Parr EB, Devlin BL, Radford BE, et al. A delayed morning and earlier evening time-restricted feeding protocol for improving glycemic control and dietary adherence in men with overweight/obesity: A randomized controlled trial. Nutrients. 2020;12. https://doi.org/10.3390/nu12020505.

Sutton EF, Beyl R, Early KS, et al. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab. 2018;27:1212–1221.e3. https://doi.org/10.1016/j.cmet.2018.04.010.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parr EB, Devlin BL, Lim KHC, et al. Time-restricted eating as a nutrition strategy for individuals with type 2 diabetes: A feasibility study. Nutrients. 2020;12:E3228. https://doi.org/10.3390/nu12113228.

Article  CAS  Google Scholar 

Che T, Yan C, Tian D, et al. Time-restricted feeding improves blood glucose and insulin sensitivity in overweight patients with type 2 diabetes: A randomised controlled trial. Nutr Metab (Lond). 2021;18:88. https://doi.org/10.1186/s12986-021-00613-9.

Article  CAS  PubMed  Google Scholar 

Andriessen C, Fealy CE, Veelen A, et al. Three weeks of time-restricted eating improves glucose homeostasis in adults with type 2 diabetes but does not improve insulin sensitivity: A randomised crossover trial. Diabetologia. 2022. https://doi.org/10.1007/s00125-022-05752-z.

Article  PubMed  PubMed Central  Google Scholar 

Wilkinson MJ, Manoogian ENC, Zadourian A, et al. Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab. 2020;31:92–104.e5. https://doi.org/10.1016/j.cmet.2019.11.004.

Article  CAS  PubMed  Google Scholar 

Wefers J, Connell NJ, Fealy CE, et al. Day-night rhythm of skeletal muscle metabolism is disturbed in older, metabolically compromised individuals. Mol Metab. 2020;41:101050. https://doi.org/10.1016/j.molmet.2020.101050.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee A, Ader M, Bray GA, et al. Diurnal variation in glucose tolerance. Cyclic suppression of insulin action and insulin secretion in normal-weight, but not obese, subjects. Diabetes. 1992;41:750–9. https://doi.org/10.2337/diab.41.6.750.

Article  CAS  PubMed  Google Scholar 

van Moorsel D, Hansen J, Havekes B, et al. Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity. Mol Metab. 2016;5:635–45. https://doi.org/10.1016/j.molmet.2016.06.012.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hesselink MKC, Schrauwen-Hinderling V, Schrauwen P. Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nat Rev Endocrinol. 2016;12:633–45. https://doi.org/10.1038/nrendo.2016.104.

Article  CAS  PubMed  Google Scholar 

Pellegrini M, Cioffi I, Evangelista A, et al. Effects of time-restricted feeding on body weight and metabolism. A systematic review and meta-analysis. Rev Endocr Metab Disord. 2020;21:17–33. https://doi.org/10.1007/s11154-019-09524-w.

Article  CAS  PubMed  Google Scholar 

Tsitsou S, Zacharodimos N, Poulia K-A, et al. Effects of Time-Restricted Feeding and Ramadan Fasting on Body Weight, Body Composition, Glucose Responses, and Insulin Resistance: A Systematic Review of Randomized Controlled Trials. Nutrients. 2022;14:4778. https://doi.org/10.3390/nu14224778.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haganes KL, Silva CP, Eyjólfsdóttir SK, et al. Time-restricted eating and exercise training improve HbA1c and body composition in women with overweight/obesity: A randomized controlled trial. Cell Metab. 2022;34:1457–1471.e4. https://doi.org/10.1016/j.cmet.2022.09.003.

Article  CAS  PubMed  Google Scholar 

He M, Wang J, Liang Q, et al. Time-restricted eating with or without low-carbohydrate diet reduces visceral fat and improves metabolic syndrome: A randomized trial. Cell Rep Med. 2022;3: 100777. https://doi.org/10.1016/j.xcrm.2022.100777.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jamshed H, Steger FL, Bryan DR, et al. Effectiveness of Early Time-Restricted Eating for Weight Loss, Fat Loss, and Cardiometabolic Health in Adults With Obesity: A Randomized Clinical Trial. JAMA Intern Med. 2022. https://doi.org/10.1001/jamainternmed.2022.3050.

Article  PubMed  PubMed Central  Google Scholar 

Lin Y-J, Wang Y-T, Chan L-C, et al. Effect of time-restricted feeding on body composition and cardio-metabolic risk in middle-aged women in Taiwan. Nutrition. 2022;93: 111504. https://doi.org/10.1016/j.nut.2021.111504.

Article  PubMed  Google Scholar 

Manoogian ENC, Zadourian A, Lo HC, et al. Feasibility of time-restricted eating and impacts on cardiometabolic health in 24-h shift workers: The Healthy Heroes randomized control trial. Cell Metab. 2022;34:1442–1456.e7. https://doi.org/10.1016/j.cmet.2022.08.018.

Article  CAS  PubMed  PubMed Central  Google Scholar 

do Nascimento Queiroz J, Macedo RCO, Dos Santos GC, et al. Cardiometabolic effects of early v. delayed time-restricted eating plus energetic restriction in adults with overweight and obesity: an exploratory randomised clinical trial. Br J Nutr. 2022;1–13. https://doi.org/10.1017/S0007114522001581.

Xie Z, Sun Y, Ye Y, et al. Randomized controlled trial for time-restricted eating in healthy volunteers without obesity. Nat Commun. 2022;13:1003. https://doi.org/10.1038/s41467-022-28662-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang L-M, Liu Z, Wang J-Q, et al. Randomized controlled trial for time-restricted eating in overweight and obese young adults. iScience. 2022;25:104870. https://doi.org/10.1016/j.isci.2022.104870.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu D, Huang Y, Huang C, et al. Calorie restriction with or without time-restricted eating in weight loss. N Engl J Med. 2022;386:1495–504. https://doi.org/10.1056/NEJMoa2114833.

Article  CAS  PubMed  Google Scholar 

Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. https://doi.org/10.1136/bmj.n71.

Article  PubMed  PubMed Central  Google Scholar 

Borenstein M, Hedges L, Higgins J, Rothstein H. Comprehensive meta-analysis version 4. Biostat, Englewood, NJ. 2022.

Higgins JPT, Li T, Deeks JJ. Chapter 6: Choosing effect measures and computing estimates of effect. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022). Cochrane. 2022. https://training.cochrane.org/handbook/current/chapter-06. Accessed 1 Mar 2023.

Hedges LV. Distribution theory for glass’s estimator of effect size and related estimators. J Educ Stat. 1981;6:107–28. https://doi.org/10.3102/10769986006002107.

Article  Google Scholar 

Sterne JAC, Savović J, Page MJ, et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898. https://doi.org/10.1136/bmj.l4898.

Article  PubMed  Google Scholar 

Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919. https://doi.org/10.1136/bmj.i4919.

Article  PubMed  PubMed Central  Google Scholar 

Schroder JD, Falqueto H, Mânica A, et al. Effects of time-restricted feeding in weight loss, metabolic syndrome and cardiovascular risk in obese women. J Transl Med. 2021;19. https://doi.org/10.1186/s12967-020-02687-0.

Moro T, Tinsley G, Bianco A, et al. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J Transl Med. 2016;14:290. https://doi.org/10.1186/s12967-016-1044-0.

Article  CAS 

留言 (0)

沒有登入
gif