Body Composition, Physical Function, and Dietary Patterns in People from 20 to Over 80 Years Old

Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. 2019, 48, 16, doi:https://doi.org/10.1093/ageing/afy169.

Google Scholar 

JafariNasabian, P.; Inglis, J.E.; Reilly, W.; Kelly, O.J.; Ilich, J.Z. Aging Human Body: Changes in Bone, Muscle and Body Fat with Consequent Changes in Nutrient Intake. J. Endocrinol. 2017, 234, R37–R51, doi:https://doi.org/10.1530/JOE-16-0603.

Article  CAS  PubMed  Google Scholar 

Tzanetakou, I.P.; Katsilambros, N.L.; Benetos, A.; Mikhailidis, D.P.; Perrea, D.N. “Is Obesity Linked to Aging?”: Adipose Tissue and the Role of Telomeres. Ageing Res. Rev. 2012, 11, 220–229, doi:https://doi.org/10.1016/j.arr.2011.12.003.

Article  PubMed  Google Scholar 

Melton, L.J.; Khosla, S.; Crowson, C.S.; O’Connor, M.K.; O’Fallon, W.M.; Riggs, B.L. Epidemiology of Sarcopenia. J. Am. Geriatr. Soc. 2000, 48, 625–630.

Article  PubMed  Google Scholar 

Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older Adults: Evidence for a Phenotype. J. Gerontol. Ser. A 2001, 56, M146–M157, doi:https://doi.org/10.1093/gerona/56.3.M146.

Article  CAS  Google Scholar 

Kelly, T.L.; Wilson, K.E.; Heymsfield, S.B. Dual Energy X-Ray Absorptiometry Body Composition Reference Values from NHANES. PLOS ONE 2009, 4, e7038, doi:https://doi.org/10.1371/journal.pone.0007038.

Article  PubMed  PubMed Central  Google Scholar 

Kirk, B.; Bani Hassan, E.; Brennan-Olsen, S.; Vogrin, S.; Bird, S.; Zanker, J.; Phu, S.; Meerkin, J.D.; Heymsfield, S.B.; Duque, G. Body Composition Reference Ranges in Community-Dwelling Adults Using Dual-Energy X-Ray Absorptiometry: The Australian Body Composition (ABC) Study. J. Cachexia Sarcopenia Muscle 2021, 12, 880–890, doi:https://doi.org/10.1002/jcsm.12712.

Article  PubMed  PubMed Central  Google Scholar 

Xiao, Z.; Guo, B.; Gong, J.; Tang, Y.; Shang, J.; Cheng, Y.; Xu, H. Sex- and Age-Specific Percentiles of Body Composition Indices for Chinese Adults Using Dual-Energy X-Ray Absorptiometry. Eur. J. Nutr. 2017, 56, 2393–2406, doi:https://doi.org/10.1007/s00394-016-1279-9.

Article  PubMed  Google Scholar 

Allman-Farinelli, M.A.; Chey, T.; Bauman, A.E.; Gill, T.; James, W.P.T. Age, Period and Birth Cohort Effects on Prevalence of Overweight and Obesity in Australian Adults from 1990 to 2000. Eur. J. Clin. Nutr. 2008, 62, 898–907, doi:https://doi.org/10.1038/sj.ejcn.1602769.

Article  CAS  PubMed  Google Scholar 

Reither, E.N.; Hauser, R.M.; Yang, Y. Do Birth Cohorts Matter? Age-Period-Cohort Analyses of the Obesity Epidemic in the United States. Soc. Sci. Med. 1982 2009, 69, 1439–1448, doi:https://doi.org/10.1016/j.socscimed.2009.08.040.

Google Scholar 

Wong, T.-J.; Yu, T.; Chang, L.-Y.; Lao, X.Q. Birth Cohort, Sex and Educational Disparities in the Trajectories of Body Mass Index in Taiwan: A Longitudinal Study. BMC Public Health 2022, 22, 409, doi:https://doi.org/10.1186/s12889-022-12762-4.

Article  PubMed  PubMed Central  Google Scholar 

Sierra, F. The Emergence of Geroscience as an Interdisciplinary Approach to the Enhancement of Health Span and Life Span. Cold Spring Harb. Perspect. Med. 2016, 6, a025163, doi:https://doi.org/10.1101/cshperspect.a025163.

Article  PubMed  PubMed Central  Google Scholar 

Malcomson, F.C.; Mathers, J.C. Nutrition and Ageing. Subcell. Biochem. 2018, 90, 373–424, doi:https://doi.org/10.1007/978-981-13-2835-0_13.

Article  CAS  PubMed  Google Scholar 

Shannon, O.M.; Ashor, A.W.; Scialo, F.; Saretzki, G.; Martin-Ruiz, C.; Lara, J.; Matu, J.; Griffiths, A.; Robinson, N.; Lillà, L.; et al. Mediterranean Diet and the Hallmarks of Ageing. Eur. J. Clin. Nutr. 2021, 75, 1176–1192, doi:https://doi.org/10.1038/s41430-020-00841-x.

Article  PubMed  Google Scholar 

Chen, X.; Maguire, B.; Brodaty, H.; O’Leary, F. Dietary Patterns and Cognitive Health in Older Adults: A Systematic Review. J. Alzheimers Dis. JAD 2019, 67, 583–619, doi:https://doi.org/10.3233/JAD-180468.

Article  PubMed  Google Scholar 

Zhang, J.; Wang, Q.; Hao, W.; Zhu, D. Long-Term Food Variety and Dietary Patterns Are Associated with Frailty among Chinese Older Adults: A Cohort Study Based on CLHLS from 2014 to 2018. Nutrients 2022, 14, doi:https://doi.org/10.3390/nu14204279.

Ren, L.; Tang, Y.; Yang, R.; Hu, Y.; Wang, J.; Li, S.; Yu, M.; Jiang, Y.; Liu, Z.; Wu, Y.; et al. Plant-Based Dietary Pattern and Low Muscle Mass: A Nation-Wide Cohort Analysis of Chinese Older Adults. BMC Geriatr. 2023, 23, 569, doi:https://doi.org/10.1186/s12877-023-04265-7.

Article  PubMed  PubMed Central  Google Scholar 

Tucker, L.A. Milk Fat Intake and Telomere Length in U.S. Women and Men: The Role of the Milk Fat Fraction. Oxid. Med. Cell. Longev. 2019, 2019, 1574021, doi:https://doi.org/10.1155/2019/1574021.

PubMed  Google Scholar 

Talegawkar, S.A.; Jin, Y.; Simonsick, E.M.; Tucker, K.L.; Ferrucci, L.; Tanaka, T. The Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) Diet Is Associated with Physical Function and Grip Strength in Older Men and Women. Am. J. Clin. Nutr. 2022, 115, 625–632, doi:https://doi.org/10.1093/ajcn/nqab310.

Article  PubMed  Google Scholar 

Inelmen, E.M.; Toffanello, E.D.; Enzi, G.; Sergi, G.; Coin, A.; Busetto, L.; Manzato, E. Differences in Dietary Patterns between Older and Younger Obese and Overweight Outpatients. J. Nutr. Health Aging 2008, 12, 3–8, doi:https://doi.org/10.1007/BF02982157.

Article  CAS  PubMed  Google Scholar 

Guyonnet, S.; Rolland, Y.; Takeda, C.; Ousset, P.-J.; Ader, I.; Davezac, N.; Dray, C.; Fazilleau, N.; Gourdy, P.; Liblau, R.; et al. The INSPIRE Bio-Resource Research Platform for Healthy Aging and Geroscience: Focus on the Human Translational Research Cohort (The INSPIRE-T Cohort). J. Frailty Aging 2021, 10, 110–120, doi:https://doi.org/10.14283/jfa.2020.38.

CAS  PubMed  Google Scholar 

Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A Short Physical Performance Battery Assessing Lower Extremity Function: Association with Self-Reported Disability and Prediction of Mortality and Nursing Home Admission. J. Gerontol. 1994, 49, M85–94, doi:https://doi.org/10.1093/geronj/49.2.m85.

Article  CAS  PubMed  Google Scholar 

Fess E.E.; Moran C.A. Clinical Assessment Recommendations; American Society of Hand Therapists, 1981

Estaquio, C.; Kesse-Guyot, E.; Deschamps, V.; Bertrais, S.; Dauchet, L.; Galan, P.; Hercberg, S.; Castetbon, K. Adherence to the French Programme National Nutrition Santé Guideline Score Is Associated with Better Nutrient Intake and Nutritional Status. J. Am. Diet. Assoc. 2009, 109, 1031–1041, doi:https://doi.org/10.1016/j.jada.2009.03.012.

Article  PubMed  Google Scholar 

Kim, J.; Jo, I. Grains, Vegetables, and Fish Dietary Pattern Is Inversely Associated with the Risk of Metabolic Syndrome in South Korean Adults. J. Am. Diet. Assoc. 2011, 111, 1141–1149, doi:https://doi.org/10.1016/j.jada.2011.05.001.

Article  PubMed  Google Scholar 

Cattell, R.B. The Scree Test For The Number Of Factors. Multivar. Behav. Res. 1966, 1, 245–276, doi:https://doi.org/10.1207/s15327906mbr0102_10.

Article  CAS  Google Scholar 

Hutcheson, G.D. The Multivariate Social Scientist; SAGE Publications, Ltd: London, 1999

Book  Google Scholar 

Santos, R. de O.; Gorgulho, B.M.; Castro, M.A. de; Fisberg, R.M.; Marchioni, D.M.; Baltar, V.T. Principal Component Analysis and Factor Analysis: Differences and Similarities in Nutritional Epidemiology Application. Rev. Bras. Epidemiol. 2019, 22, e190041, doi:https://doi.org/10.1590/1980-549720190041.

Article  PubMed  Google Scholar 

Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395, doi:https://doi.org/10.1249/01.MSS.0000078924.61453.FB.

Article  PubMed  Google Scholar 

Tukey, J.W. Exploratory Data Analysis; Addison-Wesley, 1977

McDonald JH. Multiple Comparisons. In Handbook of Biological Statistics; Sparky House Publishing: Baltimore, Maryland, 2014; pp. 254–260.

Google Scholar 

Cohen, J. Statistical Power Analysis for the Behavioral Sciences; 2nd ed.; L. Erlbaum Associates: Hillsdale, N.J., 1988; ISBN 978-0-8058-0283-2.

Google Scholar 

Stein, C.M.; Morris, N.J.; Hall, N.B.; Nock, N.L. Structural Equation Modeling. Methods Mol. Biol. Clifton NJ 2017, 1666, 557–580, doi:https://doi.org/10.1007/978-1-4939-7274-6_28.

Article  CAS  Google Scholar 

Munt, A.E.; Partridge, S.R.; Allman-Farinelli, M. The Barriers and Enablers of Healthy Eating among Young Adults: A Missing Piece of the Obesity Puzzle: A Scoping Review. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2017, 18, 1–17, doi:https://doi.org/10.1111/obr.12472.

Article  CAS  Google Scholar 

Monteiro, C.A.; Cannon, G.; Moubarac, J.-C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The UN Decade of Nutrition, the NOVA Food Classification and the Trouble with Ultra-Processing. Public Health Nutr. 2018, 21, 5–17, doi:https://doi.org/10.1017/S1368980017000234.

Article  PubMed  Google Scholar 

Pagliai, G.; Dinu, M.; Madarena, M.P.; Bonaccio, M.; Iacoviello, L.; Sofi, F. Consumption of Ultra-Processed Foods and Health Status: A Systematic Review and Meta-Analysis. Br. J. Nutr. 2021, 125, 308–318, doi:https://doi.org/10.1017/S0007114520002688.

Article  CAS  PubMed  Google Scholar 

Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. 2019, 30, 67–77.e3, doi:https://doi.org/10.1016/j.cmet.2019.05.008.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM Criteria for the Diagnosis of Malnutrition - A Consensus Report from the Global Clinical Nutrition Community. Clin. Nutr. Edinb. Scotl. 2019, 38, 1–9, doi:https://doi.org/10.1016/j.clnu.2018.08.002.

Article  CAS  Google Scholar 

Sandoval-Insausti, H.; Blanco-Rojo, R.; Graciani, A.; López-García, E.; Moreno-Franco, B.; Laclaustra, M.; Donat-Vargas, C.; Ordovás, J.M.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Ultra-Processed Food Consumption and Incident Frailty: A Prospective Cohort Study of Older Adults. J. Gerontol. A. Biol. Sci. Med. Sci. 2020, 75, 1126–1133, doi:https://doi.org/10.1093/gerona/glz140.

留言 (0)

沒有登入
gif