Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. 2019, 48, 16, doi:https://doi.org/10.1093/ageing/afy169.
JafariNasabian, P.; Inglis, J.E.; Reilly, W.; Kelly, O.J.; Ilich, J.Z. Aging Human Body: Changes in Bone, Muscle and Body Fat with Consequent Changes in Nutrient Intake. J. Endocrinol. 2017, 234, R37–R51, doi:https://doi.org/10.1530/JOE-16-0603.
Article CAS PubMed Google Scholar
Tzanetakou, I.P.; Katsilambros, N.L.; Benetos, A.; Mikhailidis, D.P.; Perrea, D.N. “Is Obesity Linked to Aging?”: Adipose Tissue and the Role of Telomeres. Ageing Res. Rev. 2012, 11, 220–229, doi:https://doi.org/10.1016/j.arr.2011.12.003.
Melton, L.J.; Khosla, S.; Crowson, C.S.; O’Connor, M.K.; O’Fallon, W.M.; Riggs, B.L. Epidemiology of Sarcopenia. J. Am. Geriatr. Soc. 2000, 48, 625–630.
Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older Adults: Evidence for a Phenotype. J. Gerontol. Ser. A 2001, 56, M146–M157, doi:https://doi.org/10.1093/gerona/56.3.M146.
Kelly, T.L.; Wilson, K.E.; Heymsfield, S.B. Dual Energy X-Ray Absorptiometry Body Composition Reference Values from NHANES. PLOS ONE 2009, 4, e7038, doi:https://doi.org/10.1371/journal.pone.0007038.
Article PubMed PubMed Central Google Scholar
Kirk, B.; Bani Hassan, E.; Brennan-Olsen, S.; Vogrin, S.; Bird, S.; Zanker, J.; Phu, S.; Meerkin, J.D.; Heymsfield, S.B.; Duque, G. Body Composition Reference Ranges in Community-Dwelling Adults Using Dual-Energy X-Ray Absorptiometry: The Australian Body Composition (ABC) Study. J. Cachexia Sarcopenia Muscle 2021, 12, 880–890, doi:https://doi.org/10.1002/jcsm.12712.
Article PubMed PubMed Central Google Scholar
Xiao, Z.; Guo, B.; Gong, J.; Tang, Y.; Shang, J.; Cheng, Y.; Xu, H. Sex- and Age-Specific Percentiles of Body Composition Indices for Chinese Adults Using Dual-Energy X-Ray Absorptiometry. Eur. J. Nutr. 2017, 56, 2393–2406, doi:https://doi.org/10.1007/s00394-016-1279-9.
Allman-Farinelli, M.A.; Chey, T.; Bauman, A.E.; Gill, T.; James, W.P.T. Age, Period and Birth Cohort Effects on Prevalence of Overweight and Obesity in Australian Adults from 1990 to 2000. Eur. J. Clin. Nutr. 2008, 62, 898–907, doi:https://doi.org/10.1038/sj.ejcn.1602769.
Article CAS PubMed Google Scholar
Reither, E.N.; Hauser, R.M.; Yang, Y. Do Birth Cohorts Matter? Age-Period-Cohort Analyses of the Obesity Epidemic in the United States. Soc. Sci. Med. 1982 2009, 69, 1439–1448, doi:https://doi.org/10.1016/j.socscimed.2009.08.040.
Wong, T.-J.; Yu, T.; Chang, L.-Y.; Lao, X.Q. Birth Cohort, Sex and Educational Disparities in the Trajectories of Body Mass Index in Taiwan: A Longitudinal Study. BMC Public Health 2022, 22, 409, doi:https://doi.org/10.1186/s12889-022-12762-4.
Article PubMed PubMed Central Google Scholar
Sierra, F. The Emergence of Geroscience as an Interdisciplinary Approach to the Enhancement of Health Span and Life Span. Cold Spring Harb. Perspect. Med. 2016, 6, a025163, doi:https://doi.org/10.1101/cshperspect.a025163.
Article PubMed PubMed Central Google Scholar
Malcomson, F.C.; Mathers, J.C. Nutrition and Ageing. Subcell. Biochem. 2018, 90, 373–424, doi:https://doi.org/10.1007/978-981-13-2835-0_13.
Article CAS PubMed Google Scholar
Shannon, O.M.; Ashor, A.W.; Scialo, F.; Saretzki, G.; Martin-Ruiz, C.; Lara, J.; Matu, J.; Griffiths, A.; Robinson, N.; Lillà, L.; et al. Mediterranean Diet and the Hallmarks of Ageing. Eur. J. Clin. Nutr. 2021, 75, 1176–1192, doi:https://doi.org/10.1038/s41430-020-00841-x.
Chen, X.; Maguire, B.; Brodaty, H.; O’Leary, F. Dietary Patterns and Cognitive Health in Older Adults: A Systematic Review. J. Alzheimers Dis. JAD 2019, 67, 583–619, doi:https://doi.org/10.3233/JAD-180468.
Zhang, J.; Wang, Q.; Hao, W.; Zhu, D. Long-Term Food Variety and Dietary Patterns Are Associated with Frailty among Chinese Older Adults: A Cohort Study Based on CLHLS from 2014 to 2018. Nutrients 2022, 14, doi:https://doi.org/10.3390/nu14204279.
Ren, L.; Tang, Y.; Yang, R.; Hu, Y.; Wang, J.; Li, S.; Yu, M.; Jiang, Y.; Liu, Z.; Wu, Y.; et al. Plant-Based Dietary Pattern and Low Muscle Mass: A Nation-Wide Cohort Analysis of Chinese Older Adults. BMC Geriatr. 2023, 23, 569, doi:https://doi.org/10.1186/s12877-023-04265-7.
Article PubMed PubMed Central Google Scholar
Tucker, L.A. Milk Fat Intake and Telomere Length in U.S. Women and Men: The Role of the Milk Fat Fraction. Oxid. Med. Cell. Longev. 2019, 2019, 1574021, doi:https://doi.org/10.1155/2019/1574021.
Talegawkar, S.A.; Jin, Y.; Simonsick, E.M.; Tucker, K.L.; Ferrucci, L.; Tanaka, T. The Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) Diet Is Associated with Physical Function and Grip Strength in Older Men and Women. Am. J. Clin. Nutr. 2022, 115, 625–632, doi:https://doi.org/10.1093/ajcn/nqab310.
Inelmen, E.M.; Toffanello, E.D.; Enzi, G.; Sergi, G.; Coin, A.; Busetto, L.; Manzato, E. Differences in Dietary Patterns between Older and Younger Obese and Overweight Outpatients. J. Nutr. Health Aging 2008, 12, 3–8, doi:https://doi.org/10.1007/BF02982157.
Article CAS PubMed Google Scholar
Guyonnet, S.; Rolland, Y.; Takeda, C.; Ousset, P.-J.; Ader, I.; Davezac, N.; Dray, C.; Fazilleau, N.; Gourdy, P.; Liblau, R.; et al. The INSPIRE Bio-Resource Research Platform for Healthy Aging and Geroscience: Focus on the Human Translational Research Cohort (The INSPIRE-T Cohort). J. Frailty Aging 2021, 10, 110–120, doi:https://doi.org/10.14283/jfa.2020.38.
Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A Short Physical Performance Battery Assessing Lower Extremity Function: Association with Self-Reported Disability and Prediction of Mortality and Nursing Home Admission. J. Gerontol. 1994, 49, M85–94, doi:https://doi.org/10.1093/geronj/49.2.m85.
Article CAS PubMed Google Scholar
Fess E.E.; Moran C.A. Clinical Assessment Recommendations; American Society of Hand Therapists, 1981
Estaquio, C.; Kesse-Guyot, E.; Deschamps, V.; Bertrais, S.; Dauchet, L.; Galan, P.; Hercberg, S.; Castetbon, K. Adherence to the French Programme National Nutrition Santé Guideline Score Is Associated with Better Nutrient Intake and Nutritional Status. J. Am. Diet. Assoc. 2009, 109, 1031–1041, doi:https://doi.org/10.1016/j.jada.2009.03.012.
Kim, J.; Jo, I. Grains, Vegetables, and Fish Dietary Pattern Is Inversely Associated with the Risk of Metabolic Syndrome in South Korean Adults. J. Am. Diet. Assoc. 2011, 111, 1141–1149, doi:https://doi.org/10.1016/j.jada.2011.05.001.
Cattell, R.B. The Scree Test For The Number Of Factors. Multivar. Behav. Res. 1966, 1, 245–276, doi:https://doi.org/10.1207/s15327906mbr0102_10.
Hutcheson, G.D. The Multivariate Social Scientist; SAGE Publications, Ltd: London, 1999
Santos, R. de O.; Gorgulho, B.M.; Castro, M.A. de; Fisberg, R.M.; Marchioni, D.M.; Baltar, V.T. Principal Component Analysis and Factor Analysis: Differences and Similarities in Nutritional Epidemiology Application. Rev. Bras. Epidemiol. 2019, 22, e190041, doi:https://doi.org/10.1590/1980-549720190041.
Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395, doi:https://doi.org/10.1249/01.MSS.0000078924.61453.FB.
Tukey, J.W. Exploratory Data Analysis; Addison-Wesley, 1977
McDonald JH. Multiple Comparisons. In Handbook of Biological Statistics; Sparky House Publishing: Baltimore, Maryland, 2014; pp. 254–260.
Cohen, J. Statistical Power Analysis for the Behavioral Sciences; 2nd ed.; L. Erlbaum Associates: Hillsdale, N.J., 1988; ISBN 978-0-8058-0283-2.
Stein, C.M.; Morris, N.J.; Hall, N.B.; Nock, N.L. Structural Equation Modeling. Methods Mol. Biol. Clifton NJ 2017, 1666, 557–580, doi:https://doi.org/10.1007/978-1-4939-7274-6_28.
Munt, A.E.; Partridge, S.R.; Allman-Farinelli, M. The Barriers and Enablers of Healthy Eating among Young Adults: A Missing Piece of the Obesity Puzzle: A Scoping Review. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2017, 18, 1–17, doi:https://doi.org/10.1111/obr.12472.
Monteiro, C.A.; Cannon, G.; Moubarac, J.-C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The UN Decade of Nutrition, the NOVA Food Classification and the Trouble with Ultra-Processing. Public Health Nutr. 2018, 21, 5–17, doi:https://doi.org/10.1017/S1368980017000234.
Pagliai, G.; Dinu, M.; Madarena, M.P.; Bonaccio, M.; Iacoviello, L.; Sofi, F. Consumption of Ultra-Processed Foods and Health Status: A Systematic Review and Meta-Analysis. Br. J. Nutr. 2021, 125, 308–318, doi:https://doi.org/10.1017/S0007114520002688.
Article CAS PubMed Google Scholar
Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. 2019, 30, 67–77.e3, doi:https://doi.org/10.1016/j.cmet.2019.05.008.
Article CAS PubMed PubMed Central Google Scholar
Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM Criteria for the Diagnosis of Malnutrition - A Consensus Report from the Global Clinical Nutrition Community. Clin. Nutr. Edinb. Scotl. 2019, 38, 1–9, doi:https://doi.org/10.1016/j.clnu.2018.08.002.
Sandoval-Insausti, H.; Blanco-Rojo, R.; Graciani, A.; López-García, E.; Moreno-Franco, B.; Laclaustra, M.; Donat-Vargas, C.; Ordovás, J.M.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Ultra-Processed Food Consumption and Incident Frailty: A Prospective Cohort Study of Older Adults. J. Gerontol. A. Biol. Sci. Med. Sci. 2020, 75, 1126–1133, doi:https://doi.org/10.1093/gerona/glz140.
留言 (0)