Learning from Persistent Viremia: Mechanisms and Implications for Clinical Care and HIV-1 Cure

Finzi D, Siliciano RF. Viral dynamics in HIV-1 infection. Cell. 1998;93:665–71.

Article  CAS  PubMed  Google Scholar 

Mellors JW, Rinaldo CR, Gupta P, et al. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science. 1996;272:1167–70.

Article  CAS  PubMed  Google Scholar 

Ho DD, Neumann AU, Perelson AS, et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature. 1995;373:123–6.

Article  CAS  PubMed  Google Scholar 

Wei X, Ghosh SK, Taylor ME, et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature. 1995;373:117–22.

Article  CAS  Google Scholar 

Powderly WG, Landay A, Lederman MM. Recovery of the immune system with antiretroviral therapy: the end of opportunism? JAMA. 1998;280:72–7.

Article  CAS  Google Scholar 

Chiasson MA, Berenson L, Li W, et al. Declining HIV/AIDS mortality in New York City. J Acquir Immune Defic Syndr. 1999;21:59–64.

Article  CAS  PubMed  Google Scholar 

Chun TW, Finzi D, Margolick J, et al. In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency. Nat Med. 1995;1:1284–90.

Article  CAS  PubMed  Google Scholar 

Chun TW, Carruth L, Finzi D, et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature. 1997;387:183–8.

Article  CAS  Google Scholar 

Finzi D, Hermankova M, Pierson T, et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science. 1997;278:1295 LP – 1300.

Article  Google Scholar 

Wong JK, Hezareh M, Günthard HF, et al. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science. 1997;278:1291–5.

Article  CAS  PubMed  Google Scholar 

Finzi D, Blankson J, Siliciano JD, et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med. 1999;5:512–7.

Article  CAS  PubMed  Google Scholar 

•• Dornadula G, Zhang H, VanUitert B, et al. Residual HIV-1 RNA in blood plasma of patients taking suppressive highly active antiretroviral therapy. JAMA. 1999;282:1627–32. (This work first describes the detection of residual virus in plasma from people with <50 HIV-1 RNA copies/mL.)

Article  CAS  PubMed  Google Scholar 

•• Palmer S, Wiegand AP, Maldarelli F, et al. New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol. 2003;41:4531–6. (In this work, Palmer and colleagues developed an ultrasensitive method to measure residual viremia.)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sklar PA, Ward DJ, Baker RK, et al. Prevalence and clinical correlates of HIV viremia ('blips’) in patients with previous suppression below the limits of quantification. AIDS. 2002;16:2035–41.

Article  CAS  PubMed  Google Scholar 

Nettles RE, Kieffer TL, Kwon P, et al. Intermittent HIV-1 viremia (Blips) and drug resistance in patients receiving HAART. JAMA. 2005;293:817–29.

Article  CAS  PubMed  Google Scholar 

•• Halvas EK, Joseph KW, Brandt LD, et al. HIV-1 viremia not suppressible by antiretroviral therapy can originate from large T cell clones producing infectious virus. J Clin Invest. 2020;130:5847. (This work characterized persistent viremia in 8 participants and demonstrated that NSV is caused by virions released from expanded clones carrying infectious proviruses.)

Article  CAS  PubMed  PubMed Central  Google Scholar 

•• White JA, Wu F, Yasin S, et al. Clonally expanded HIV-1 proviruses with 5′-leader defects can give rise to nonsuppressible residual viremia. J Clin Invest. 2023;133:e165245. (This work showed that defective proviruses with small deletions and point mutations in the 5-leader can cause viremia and complicate ART management.)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cillo AR, Vagratian D, Bedison MA, et al. Improved single-copy assays for quantification of persistent HIV-1 viremia in patients on suppressive antiretroviral therapy. J Clin Microbiol. 2014;52:3944.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tosiano MA, Jacobs JL, Shutt KA, et al. A simpler and more sensitive single-copy HIV-1 RNA assay for quantification of persistent HIV-1 viremia in individuals on suppressive antiretroviral therapy. J Clin Microbiol. 2019;57:e01714-e1718.

Article  CAS  PubMed Central  Google Scholar 

Jacobs JL, Tosiano MA, Koontz DL, et al. Automated multireplicate quantification of persistent HIV-1 viremia in individuals on antiretroviral therapy. J Clin Microbiol. 2020;58:e01442-e1520.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jacobs JL, Halvas EK, Tosiano MA, et al. Persistent HIV-1 viremia on antiretroviral therapy: measurement and mechanisms. Front Microbiol. 2019;10:2383.

Article  PubMed  PubMed Central  Google Scholar 

Fletcher CV, Staskus K, Wietgrefe SW, et al. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc Natl Acad Sci U S A. 2014;111:2307–12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Puertas MC, Massanella M, Llibre JM, et al. Intensification of a raltegravir-based regimen with maraviroc in early HIV-1 infection. AIDS. 2014;28:325–34.

Article  CAS  PubMed  Google Scholar 

Buzón MJ, Massanella M, Llibre JM, et al. HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects. Nat Med. 2010;16:460–5.

Article  PubMed  Google Scholar 

Buzón MJ, Codoñer FM, Frost SDW, et al. Deep molecular characterization of HIV-1 dynamics under suppressive haart. PLoS Pathog. 2011;7:e1002314.

Article  PubMed  PubMed Central  Google Scholar 

Sigal A, Kim JT, Balazs AB, et al. Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature. 2011;477:95–9.

Article  CAS  PubMed  Google Scholar 

Patterson KB, Prince HA, Stevens T, et al. Differential penetration of raltegravir throughout gastrointestinal tissue: implications for eradication and cure. AIDS. 2013;27:1413–9.

Article  CAS  PubMed  Google Scholar 

Onafuwa-Nuga A, Telesnitsky A. The remarkable frequency of human immunodeficiency virus type 1 genetic recombination. Microbiol Mol Biol Rev. 2009;73:451–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Neil PK, Sun G, Yu H, et al. Mutational analysis of HIV-1 long terminal repeats to explore the relative contribution of reverse transcriptase and RNA polymerase II to viral mutagenesis. J Biol Chem. 2002;277:38053–61.

Article  PubMed  Google Scholar 

Ruff CT, Ray SC, Kwon P, et al. Persistence of wild-type virus and lack of temporal structure in the latent reservoir for human immunodeficiency virus type 1 in pediatric patients with extensive antiretroviral exposure. J Virol. 2002;76:9481–92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

•• Bailey JR, Sedaghat AR, Kieffer T, et al. Residual human immunodeficiency virus type 1 viremia in some patients on antiretroviral therapy is dominated by a small number of invariant clones rarely found in circulating CD4 + T cells. J Virol. 2006;80:6441–57. (This work was the first to show that RV was comprised of recurring identical sequences, likely reflecting proliferation of infected cells.)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dinoso JB, Kim SY, Wiegand AM, et al. Treatment intensification does not reduce residual HIV-1 viremia in patients on highly active antiretroviral therapy. Proc Natl Acad Sci U S A. 2009;106:9403–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kieffer TL, Finucane MM, Nettles RE, et al. Genotypic analysis of HIV-1 drug resistance at the limit of detection: virus production without evolution in treated adults with undetectable HIV loads. J Infect Dis. 2004;189:1452–65.

Article  CAS  PubMed  Google Scholar 

Tobin NH, Learn GH, Holte SE, et al. Evidence that low-level viremias during effective highly active antiretroviral therapy result from two processes: expression of archival virus and replication of virus. J Virol. 2005;79:9625–34.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bui JK, Sobolewski MD, Keele BF, et al. Proviruses with identical sequences comprise a large fraction of the replication-competent HIV reservoir. PLOS Pathog. 2017;13:e1006283.

Article  PubMed  PubMed Central  Google Scholar 

Hosmane NN, Kwon KJ, Bruner KM, et al. Proliferation of latently infected CD4+ T cells carrying replication-competent HIV-1: potential role in latent reservoir dynamics. J Exp Med. 2017;214:959–72.

Article  CAS  PubMed Central 

留言 (0)

沒有登入
gif