HIV-1 Myeloid Reservoirs — Contributors to Viral Persistence and Pathogenesis

UNAIDS. Global HIV & AIDS statistics — Fact sheet. 2023.

Google Scholar 

Veenhuis RT, Abreu CM, Shirk EN, Gama L, Clements JE. HIV replication and latency in monocytes and macrophages. Semin Immunol. 2021;51:101472. https://doi.org/10.1016/j.smim.2021.101472.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koppensteiner H, Brack-Werner R, Schindler M. Macrophages and their relevance in human immunodeficiency virus type I infection. Retrovirology. 2012;9:82. https://doi.org/10.1186/1742-4690-9-82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Varol C, Mildner A, Jung S. Macrophages: development and tissue specialization. Annu Rev Immunol. 2015;33:643–75. https://doi.org/10.1146/annurev-immunol-032414-112220.

Article  CAS  PubMed  Google Scholar 

Hellman L. Phenotypic and functional heterogeneity of monocytes and macrophages. Int J Mol Sci. 2023;24(19) https://doi.org/10.3390/ijms241914525.

Roszer T. Understanding the biology of self-renewing macrophages. Cells. 2018;7(8) https://doi.org/10.3390/cells7080103.

Hoeffel G, Ginhoux F. Ontogeny of tissue-resident macrophages. Front Immunol. 2015;6:486. https://doi.org/10.3389/fimmu.2015.00486.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perdiguero EG, Geissmann F. The development and maintenance of resident macrophages. Nat Immunol. 2016;17(1):2–8. https://doi.org/10.1038/ni.3341.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mass E, Nimmerjahn F, Kierdorf K, Schlitzer A. Tissue-specific macrophages: how they develop and choreograph tissue biology. Nat Rev Immunol. 2023;23(9):563–79. https://doi.org/10.1038/s41577-023-00848-y.

Article  CAS  PubMed  Google Scholar 

Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity. 2013;38(4):792–804. https://doi.org/10.1016/j.immuni.2013.04.004.

Article  CAS  PubMed  Google Scholar 

Hirayama D, Iida T, Nakase H. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int J Mol Sci. 2017;19(1) https://doi.org/10.3390/ijms19010092.

Kim SY, Nair MG. Macrophages in wound healing: activation and plasticity. Immunol Cell Biol. 2019;97(3):258–67. https://doi.org/10.1111/imcb.12236.

Article  PubMed  PubMed Central  Google Scholar 

Strizova Z, Benesova I, Bartolini R, Novysedlak R, Cecrdlova E, Foley LK, et al. M1/M2 macrophages and their overlaps - myth or reality? Clin Sci. 2023;137(15):1067–93. https://doi.org/10.1042/CS20220531.

Article  CAS  Google Scholar 

Koenig S, Gendelman HE, Orenstein JM, Dal Canto MC, Pezeshkpour GH, Yungbluth M, et al. Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science. 1986;233(4768):1089–93. https://doi.org/10.1126/science.3016903.

Article  ADS  CAS  PubMed  Google Scholar 

Gartner S, Markovits P, Markovitz DM, Kaplan MH, Gallo RC, Popovic M. The role of mononuclear phagocytes in HTLV-III/LAV infection. Science. 1986;233(4760):215–9. https://doi.org/10.1126/science.3014648.

Article  ADS  CAS  PubMed  Google Scholar 

Baxter AE, Russell RA, Duncan CJ, Moore MD, Willberg CB, Pablos JL, et al. Macrophage infection via selective capture of HIV-1-infected CD4+ T cells. Cell Host Microbe. 2014;16(6):711–21. https://doi.org/10.1016/j.chom.2014.10.010.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bertram KM, Tong O, Royle C, Turville SG, Nasr N, Cunningham AL, et al. Manipulation of mononuclear phagocytes by HIV: implications for early transmission events. Front Immunol. 2019;10:2263. https://doi.org/10.3389/fimmu.2019.02263.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duncan CJ, Sattentau QJ. Viral determinants of HIV-1 macrophage tropism. Viruses. 2011;3(11):2255–79. https://doi.org/10.3390/v3112255.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carter GC, Bernstone L, Baskaran D, James W. HIV-1 infects macrophages by exploiting an endocytic route dependent on dynamin, Rac1 and Pak1. Virology. 2011;409(2):234–50. https://doi.org/10.1016/j.virol.2010.10.018.

Article  CAS  PubMed  Google Scholar 

Dupont M, Sattentau QJ. Macrophage cell-cell interactions promoting HIV-1 infection. Viruses. 2020;12(5) https://doi.org/10.3390/v12050492. This review highlights how cell-to-cell interactions promote efficient HIV infection with macrophages.

Chu H, Wang JJ, Qi M, Yoon JJ, Wen X, Chen X, et al. The intracellular virus-containing compartments in primary human macrophages are largely inaccessible to antibodies and small molecules. PLoS One. 2012;7(5):e35297. https://doi.org/10.1371/journal.pone.0035297.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Eisele E, Siliciano RF. Redefining the viral reservoirs that prevent HIV-1 eradication. Immunity. 2012;37(3):377–88. https://doi.org/10.1016/j.immuni.2012.08.010.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wallet C, De Rovere M, Van Assche J, Daouad F, De Wit S, Gautier V, et al. Microglial cells: the main HIV-1 reservoir in the brain. Front Cell Infect Microbiol. 2019;9:362. https://doi.org/10.3389/fcimb.2019.00362.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fromentin R, Chomont N. HIV persistence in subsets of CD4+ T cells: 50 shades of reservoirs. Semin Immunol. 2021;51:101438. https://doi.org/10.1016/j.smim.2020.101438.

Article  CAS  PubMed  Google Scholar 

Rabezanahary H, Moukambi F, Palesch D, Clain J, Racine G, Andreani G, et al. Despite early antiretroviral therapy effector memory and follicular helper CD4 T cells are major reservoirs in visceral lymphoid tissues of SIV-infected macaques. Mucosal Immunol. 2020;13(1):149–60. https://doi.org/10.1038/s41385-019-0221-x.

Article  CAS  PubMed  Google Scholar 

Massanella M, Bakeman W, Sithinamsuwan P, Fletcher JLK, Chomchey N, Tipsuk S, et al. Infrequent HIV infection of circulating monocytes during antiretroviral therapy. J Virol. 2019;94(1) https://doi.org/10.1128/JVI.01174-19.

Wong ME, Jaworowski A, Hearps AC. The HIV reservoir in monocytes and macrophages. Front Immunol. 2019;10:1435. https://doi.org/10.3389/fimmu.2019.01435.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu T, Muthui D, Holte S, Nickle D, Feng F, Brodie S, et al. Evidence for human immunodeficiency virus type 1 replication in vivo in CD14(+) monocytes and its potential role as a source of virus in patients on highly active antiretroviral therapy. J Virol. 2002;76(2):707–16. https://doi.org/10.1128/jvi.76.2.707-716.2002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Delobel P, Sandres-Saune K, Cazabat M, L'Faqihi FE, Aquilina C, Obadia M, et al. Persistence of distinct HIV-1 populations in blood monocytes and naive and memory CD4 T cells during prolonged suppressive HAART. AIDS. 2005;19(16):1739–50. https://doi.org/10.1097/01.aids.0000183125.93958.26.

Article  PubMed  Google Scholar 

Hansen EC, Ransom M, Hesselberth JR, Hosmane NN, Capoferri AA, Bruner KM, et al. Diverse fates of uracilated HIV-1 DNA during infection of myeloid lineage cells. Elife. 2016;5 https://doi.org/10.7554/eLife.18447.

Garbuglia AR, Calcaterra S, D'Offizi G, Topino S, Narciso P, Lillo F, et al. HIV-1 DNA burden dynamics in CD4 T cells and monocytes in patients undergoing a transient therapy interruption. J Med Virol. 2004;74(3):373–81. https://doi.org/10.1002/jmv.20188.

Article  CAS  PubMed  Google Scholar 

Veenhuis RT, Abreu CM, Costa PAG, Ferreira EA, Ratliff J, Pohlenz L, et al. Monocyte-derived macrophages contain persistent latent HIV reservoirs. Nat Microbiol. 2023;8(5):833–44. https://doi.org/10.1038/s41564-023-01349-3. This study shows that monocytes and MDMs contain intact HIV genomes and that increased HIV DNA in MDMs correlated with reactivatable latent reservoirs.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ko A, Kang G, Hattler JB, Galadima HI, Zhang J, Li Q, et al. Macrophages but not astrocytes harbor HIV DNA in the brains of HIV-1-infected aviremic individuals on suppressive antiretroviral therapy. J Neuroimmune Pharmacol. 2019;14(1):110–9. https://doi.org/10.1007/s11481-018-9809-2.

Article  PubMed  Google Scholar 

Tso FY, Kang G, Kwon EH, Julius P, Li Q, West JT, et al. Brain is a potential sanctuary for subtype C HIV-1 irrespective of ART treatment outcome. PLoS One. 2018;13(7):e0201325. https://doi.org/10.1371/journal.pone.0201325.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cochrane CR, Angelovich TA, Byrnes SJ, Waring E, Guanizo AC, Trollope GS, et al. Intact HIV proviruses persist in the brain despite viral suppression with ART. Ann Neurol. 2022;92(4):532–44. https://doi.org/10.1002/ana.26456. This study uses the intact proviral DNA assay to demonstrate that similar reservoirs were measured in the brain tissue from ART-suppressed and viremic PWH.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang Y, Chaillon A, Gianella S, Wong LM, Li D, Simermeyer TL, et al. Brain microglia serve as a persistent HIV reservoir despite durable antiretroviral therapy. J Clin Invest. 2023;133(12) https://doi.org/10.1172/JCI167417. This study demonstrates that brain myeloid cells compose the CNS reservoir in NHP and vsPWH and that brain sequences are distinct from the periheral sequences.

Avalos CR, Abreu CM, Queen SE, Li M, Price S, Shirk EN, et al. Brain macrophages in simian immunodeficiency virus-infected, antiretroviral-suppressed macaques: a functional latent reservoir. mBio. 2017;8(4) https://doi.org/10.1128/mBio.01186-17.

Abreu CM, Veenhuis RT, Avalos CR, Graham S, Queen SE, Shirk EN, et al. Infectious virus persists in CD4(

留言 (0)

沒有登入
gif