Mitochondria as a target for exercise-mitigated type 2 diabetes

Abdelmageed ME, Shehatou G, Suddek GM, Salem HA (2021) Protocatechuic acid improves hepatic insulin resistance and restores vascular oxidative status in type-2 diabetic rats. Environ Toxicol Pharmacol 83:103577. https://doi.org/10.1016/j.etap.2020.103577

Article  CAS  PubMed  Google Scholar 

Abdul-Ghani MA, Jani R, Chavez A, Molina-Carrion M, Tripathy D, Defronzo RA (2009) Mitochondrial reactive oxygen species generation in obese non-diabetic and type 2 diabetic participants. Diabetologia 52:574–582. https://doi.org/10.1007/s00125-009-1264-4

Article  CAS  PubMed  Google Scholar 

Abu SO, Arroum T, Morris S, Busch KB (2023) PGC-1alpha is a master regulator of mitochondrial lifecycle and ROS Stress response. Antioxidants (basel). https://doi.org/10.3390/antiox12051075

Article  PubMed  PubMed Central  Google Scholar 

Al-Lahham R, Deford JH, Papaconstantinou J (2016) Mitochondrial-generated ROS down regulates insulin signaling via activation of the p38MAPK stress response pathway. Mol Cell Endocrinol 419:1–11. https://doi.org/10.1016/j.mce.2015.09.013

Article  CAS  PubMed  Google Scholar 

Amat R, Planavila A, Chen SL, Iglesias R, Giralt M, Villarroya F (2009) SIRT1 controls the transcription of the peroxisome proliferator-activated receptor-gamma co-activator-1alpha (PGC-1alpha) gene in skeletal muscle through the PGC-1alpha autoregulatory loop and interaction with MyoD. J Biol Chem 284:21872–21880. https://doi.org/10.1074/jbc.M109.022749

Article  CAS  PubMed  PubMed Central  Google Scholar 

Apostolova N, Iannantuoni F, Gruevska A, Muntane J, Rocha M, Victor VM (2020) Mechanisms of action of metformin in type 2 diabetes: effects on mitochondria and leukocyte-endothelium interactions. Redox Biol 34:101517. https://doi.org/10.1016/j.redox.2020.101517

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aquilano K, Vigilanza P, Baldelli S, Pagliei B, Rotilio G, Ciriolo MR (2010) Peroxisome proliferator-activated receptor gamma co-activator 1alpha (PGC-1alpha) and sirtuin 1 (SIRT1) reside in mitochondria: possible direct function in mitochondrial biogenesis. J Biol Chem 285:21590–21599. https://doi.org/10.1074/jbc.M109.070169

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arab JP, Arrese M, Trauner M (2018) Recent insights into the pathogenesis of nonalcoholic fatty liver disease. Annu Rev Pathol 13:321–350. https://doi.org/10.1146/annurev-pathol-020117-043617

Article  CAS  PubMed  Google Scholar 

Arribat Y, Broskey NT, Greggio C, Boutant M, Conde AS, Kulkarni SS et al (2019) Distinct patterns of skeletal muscle mitochondria fusion, fission and mitophagy upon duration of exercise training. Acta Physiol (oxf) 225:e13179. https://doi.org/10.1111/apha.13179

Article  CAS  PubMed  Google Scholar 

Arruda AP, Pers BM, Parlakgul G, Guney E, Inouye K, Hotamisligil GS (2014) Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nat Med 20:1427–1435. https://doi.org/10.1038/nm.3735

Article  CAS  PubMed  PubMed Central  Google Scholar 

Axelrod CL, Fealy CE, Mulya A, Kirwan JP (2019) Exercise training remodels human skeletal muscle mitochondrial fission and fusion machinery towards a pro-elongation phenotype. Acta Physiol (oxf) 225:e13216. https://doi.org/10.1111/apha.13216

Article  CAS  PubMed  Google Scholar 

Barnett KC, Kagan JC (2020) Lipids that directly regulate innate immune signal transduction. Innate Immun 26:4–14. https://doi.org/10.1177/1753425919852695

Article  CAS  PubMed  Google Scholar 

Barquissau V, Capel F, Dardevet D, Feillet-Coudray C, Gallinier A, Chauvin MA et al (2017) Reactive oxygen species enhance mitochondrial function, insulin sensitivity and glucose uptake in skeletal muscle of senescence accelerated prone mice SAMP8. Free Radic Biol Med 113:267–279. https://doi.org/10.1016/j.freeradbiomed.2017.10.012

Article  CAS  PubMed  Google Scholar 

Beaulant A, Dia M, Pillot B, Chauvin MA, Ji-Cao J, Durand C et al (2022) Endoplasmic reticulum-mitochondria miscommunication is an early and causal trigger of hepatic insulin resistance and steatosis. J Hepatol 77:710–722. https://doi.org/10.1016/j.jhep.2022.03.017

Article  CAS  PubMed  Google Scholar 

Bhansali S, Bhansali A, Walia R, Saikia UN, Dhawan V (2017) Alterations in mitochondrial oxidative stress and mitophagy in subjects with prediabetes and type 2 diabetes mellituS. Front Endocrinol (lausanne) 8:347. https://doi.org/10.3389/fendo.2017.00347

Article  PubMed  Google Scholar 

Bhatti JS, Bhatti GK, Reddy PH (2017) Mitochondrial dysfunction and oxidative stress in metabolic disorders - a step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis 1863:1066–1077. https://doi.org/10.1016/j.bbadis.2016.11.010

Article  CAS  PubMed  Google Scholar 

Bonnard C, Durand A, Peyrol S, Chanseaume E, Chauvin MA, Morio B et al (2008) Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest 118:789–800. https://doi.org/10.1172/JCI32601

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC et al (2012) A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468. https://doi.org/10.1038/nature10777

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brinkmann C, Przyklenk A, Metten A, Schiffer T, Bloch W, Brixius K et al (2017) Influence of endurance training on skeletal muscle mitophagy regulatory proteins in type 2 diabetic men. Endocr Res 42:325–330. https://doi.org/10.1080/07435800.2017.1323914

Article  CAS  PubMed  Google Scholar 

Chattopadhyay M, Khemka VK, Chatterjee G, Ganguly A, Mukhopadhyay S, Chakrabarti S (2015) Enhanced ROS production and oxidative damage in subcutaneous white adipose tissue mitochondria in obese and type 2 diabetes subjects. Mol Cell Biochem 399:95–103. https://doi.org/10.1007/s11010-014-2236-7

Article  CAS  PubMed  Google Scholar 

Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM et al (2010) Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141:280–289. https://doi.org/10.1016/j.cell.2010.02.026

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng H, Gang X, Liu Y, Wang G, Zhao X, Wang G (2020) Mitochondrial dysfunction plays a key role in the development of neurodegenerative diseases in diabetes. Am J Physiol Endocrinol Metab 318:E750–E764. https://doi.org/10.1152/ajpendo.00179.2019

Article  CAS  PubMed  Google Scholar 

Chouchani ET, Kazak L, Spiegelman BM (2019) New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab 29:27–37. https://doi.org/10.1016/j.cmet.2018.11.002

Article  CAS  PubMed  Google Scholar 

Civiletto G, Varanita T, Cerutti R, Gorletta T, Barbaro S, Marchet S et al (2015) Opa1 overexpression ameliorates the phenotype of two mitochondrial disease mouse models. Cell Metab 21:845–854. https://doi.org/10.1016/j.cmet.2015.04.016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cobley JN, Bartlett JD, Kayani A, Murray SW, Louhelainen J, Donovan T et al (2012) PGC-1alpha transcriptional response and mitochondrial adaptation to acute exercise is maintained in skeletal muscle of sedentary elderly males. Biogerontology 13:621–631. https://doi.org/10.1007/s10522-012-9408-1

Article  CAS  PubMed  Google Scholar 

Crescenzo R, Bianco F, Mazzoli A, Giacco A, Liverini G, Iossa S (2016) A possible link between hepatic mitochondrial dysfunction and diet-induced insulin resistance. Eur J Nutr 55:1–6. https://doi.org/10.1007/s00394-015-1073-0

Article  CAS  PubMed  Google Scholar 

Dewidar B, Kahl S, Pafili K, Roden M (2020) Metabolic liver disease in diabetes-From mechanisms to clinical trials. Metabolism 111S:154299. https://doi.org/10.1016/j.metabol.2020.154299

Article  CAS  PubMed  Google Scholar 

Diaz-Morales N, Rovira-Llopis S, Escribano-Lopez I, Banuls C, Lopez-Domenech S, Falcon R et al (2016) Role of oxidative stress and mitochondrial dysfunction in skeletal muscle in type 2 diabetic patients. Curr Pharm Des 22:2650–2656. https://doi.org/10.2174/1381612822666160217142949

Article  CAS  PubMed  Google Scholar 

Ehrlicher SE, Stierwalt HD, Newsom SA, Robinson MM (2021) Short-term high-fat feeding does not alter mitochondrial lipid respiratory capacity but triggers mitophagy response in skeletal muscle of mice. Front Endocrinol (lausanne) 12:651211. https://doi.org/10.3389/fendo.2021.651211

Article  PubMed  Google Scholar 

Fealy CE, Mulya A, Lai N, Kirwan JP (2014) Exercise training decreases activation of the mitochondrial fission protein dynamin-related protein-1 in insulin-resistant human skeletal muscle. J Appl Physiol (1985) 117:239–245. https://doi.org/10.1152/japplphysiol.01064.2013

Article  CAS  PubMed  Google Scholar 

Fealy CE, Mulya A, Axelrod CL, Kirwan JP (2018) Mitochondrial dynamics in skeletal muscle insulin resistance and type 2 diabetes. Transl Res 202:69–82. https://doi.org/10.1016/j.trsl.2018.07.011

Article  CAS  PubMed 

留言 (0)

沒有登入
gif